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PREFACE

This report is the second of a series dealing with the engineer-
ing geology and geomorphology of streambank erosion. The study was con-
ducted in the Geotechnical Laboratory (GL) of the U. S. Army Engineer
Waterways Experiment Station (WES) and was funded by the Office, Chief
of Engineers (OCE), U. S. Army, by authority of the Section 32 Program,
"Streambank Erosion Control, Evaluation and Demonstration Act of 1974."
This study was a part of Task II, "The Influence of Fluvial Geology on
Streambank Erosion,"”" which was a part of Work Unit 4, "Research on Soil
Stability and Identification of Causes of Bank Erosion," of the Program.

The investigation was performed during the period June 1977 to
August 1978 under the general supervision of Mr. James P. Sale, former
Chief, GL; Dr. William F. Marcuson III, Chief, GL; Dr. Paul F. Hadala,
Assistant Chief, GL; Dr. Don C. Banks, Chief, Engineering Geology and
Rock Mechanics Division (EG&RMD); and Mr. Clifford L. McAnear, Chief,
Soil Mechanics Division, and Principal Investigator, Work Unit 4. Mr.
Charlie B. Whitten and Dr. David M. Patrick, EG&RMD, were the authors of
this report. Dr. Patrick was the Principal Investigator of Task II.

This report was reviewed by Dr. Stanley A. Schumm, Colorado State
University; Dr. Colin R. Thorne, University of East Anglia, England;

Mr. B. R. Winkley, U. S. Army Corps of Engineers, Vicksburg District;
and Mr. Thomas J. Pokrefke, Jr., Hydraulics Laboratory, WES.

Commanders and Directors of WES during the conduct of the study
and the preparation of this report were COL John L. Cannon, CE,

COL Nelson P. Conover, CE, and COL Tilford C. Creel, CE. The Technical
Director was Mr. Fred R. Brown. J/
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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT ‘
U. S. customary units of measurement used in this report can be con-
verted to metric (SI) units as follows:
Multiply By To Obtain
cubic feet per second 0.02831685 cubic metres per second
feet 0.3048 metres
inches 2.54 centimetres ‘
miles (U. S. statute) 1.609347 kilometres
square miles 2.589998 square kilometres
3

R




ENGINEERING GEOLOGY AND GEOMORPHOLOGY
OF STREAMBANK EROSION

YAZOO RIVER BASIN UPLANDS, MISSISSIPPI
PART I: INTRODUCTION

1. The Yazoo Basin Uplands in northwest Mississippi is a region
in which rather severe bank erosion has occurred along many principal
streams. Bank erosion has resulted in loss of agricultural land and has
endangered bridges and culverts along the affected stream courses.

There are indications, at least along certain streams, that the erosion
has accelerated over the last few years. In order to control and wini-
mize the land loss and other environmental hazards accompanying the
erosion, the U. S. Army Corps of Engineers (CE) has initiated plans for
certain hydraulic structures for bank protection and stream control as
well as hydrologic research on the causes of erosion in this area.

2. The Yazoo Basin Uplands was selected as an area for stream-
bank erosion studies in this work unit for several reasons. First, the
erosion phenomena appear extensively throughout the area and are locally
quite severe. Second, initial observations of stream geometry and other
general characteristics suggested that fluvial change was occurring at
an accelerated rate., The third reason was the extent to which the area
and its streams had been subjected to human activities. These activi-
ties include overextensive agriculture, stream straightening, and con-

struction of dams.

Objectives

3. The objectives of this study were:

a. To describe bank erosion phenomena along selected streams
in terms of fluvial geology and geomorphology.

b. To quantitatively investigate historic changes in fluvial
geomorphology along the selected streams by means of topo~
graphic maps, aerial photographs, and other records.




c. To relate the geomorphological phenomena and historic
changes to geotechnical and hydraulic processes.

d. To determine the main causes of bank erosion along these
streams.

Scope

4. Four perennial streams located wholly or in part in the Yazoo
Basin Uplands were selected for study. These streams are Perry,
Tillatoba, Goodwin, and Hotopha Creeks (Figure 1). These particular
streams were selected for geomorphological analysis because they exhibit
extensive bank erosion and because bank protection projects and hydrau-
lic research have been proposed for them. Although the principal area
of consideration was the Yazoo Basin Uplands, it was also necessary to
investigate aspects of fluvial geology and geomorphology in the Delta
portion of the Yazoo Basin onto which the flow of the four streams ulti-
mately emerges. The Delta investigation was required since, as is often
the case in studies of fluvial systems, upstream and downstream condi-
tions may significantly influence local conditions. The objectives and
conclusions of this study, although applied to specific streams in a
rather small basin, are believed to be applicable to and correlative

with many other regions in the United States.

Site Locations

Perry Creek
5. Perry Creek is located in north-central Mississippi at

Grenada (Figure 2). It i, a fifth-order stream, having a drainage basin
of approximately 19 square miles.* Perry Creek flows into Batupan Bogue
approximately 2 miles above the confluence of Batupan Bogue and the
Yalobusha River.

.

* A table of factors for converting U. S. customary units of measure-
ment to metric (SI) units is presented on page 3.
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Figure 2.

Perry Creek Basin with sites P1 through
P4 located




Tillatoba Creek

6. Tillatoba Creek is a seventh-order stream located in north-
central Mississippi at Charleston (Figure 3). The Tillatoba Creek Basin
covers approximately 175 square miles, of which 173 square miles is in
the uplands and 2 square miles is in the Delta.

7. Tillatoba Creek is formed by the junction of North Fork
Tillatoba Creek and South Fork Tillatoba Creek at the bluff line.
Tillatoba Creek flows westward from the bluff line across the delta
flatlands to join the Tallahatchie River at the confluence of
Tallahatchie River and the Panola-Quitman Floodway.

Goodwin Creek

8. Goodwin Creek is a fourth-order stream located in north-
central Mississippi, approximately 2 miles east of Courtland (Figure 4).
Goodwin Creek Basin covers approximately 8.8 square miles and empties
into Long Creek.

Hotopha Creek

9. Hotopha Creek is a fifth-order stream located in north-
central Mississippi, east of Batesville (Figure 5). The Hotopha Creek
Basin covers appoximately 37 square miles and empties into the Little

Tallahatchie River approximately 8 miles downstream from Sardis Dam.




~ - AL 3 ey e O - s 3 3 SREEPSTRY
pe3eooT 81 YSnoayl L SI3ITS YITA ufseg Wo2i1) BQOIBTTIL °€ 2an3yi
1
i
N :
-’Nl.""l}
w TV5E ]
AN D
us @

MEVE HIAZYD VEOLYTEL STUVONNOE e

NI

. w—aze

$3W JUVNDS S L1
$37WN JYWNOS 2 MIWD VEOIVTIRL T:..Un

$2WN WVNDS I¥ IO VEOLVTINL W04 TN )
STWN JUVADE 00  NIFWD VEOLVTHL MWOS MINOS * SoNY N
SIWA JUVNDS 26 NIDYD VEOLVIHL YOS HANON w

NISYS N338D YBOAVIIIL

7, //////////////S//

/
\
\
|
/
/

L ek
IOV TIVL

L7

RV 3Py




Figure 4. Goodwin Creek Basin with sites
Gl through G4 located
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PART II: HYDRAULIC AND GEOMORPHIC RELATIONSHIPS

Regime Proportionalities

10. As stated previously, one objective of this study was to
identify and measure historic geomorphic changes in the four streams.
The understanding of the nature and amount of change taking place should
define trends and yield insight as to underlying causes of streambank
erosion. In order to accomplish this objective, one should be able to
measure variables which represent and are characteristic of the fluvial
system being analyzed; ideally, also, one should identify baseline con~
ditions against which the measured quantities may be compared. The
measured variables must also be discernible from observations of aerial
photographs and topographic maps.

11. The measurable variables that reflect the hydraulic geome-
try at or along a particular stream are: flow, sediment discharge,
width, depth, channel and valley slopes, median sediment diameter, and
sinuosity. These variables, which define hydraulic and geomorphic con-
ditions, are interdependent and can be expressed by the five proportion-

alities given below:

Proportionality 1 W « Q Qs
Proportionality 2 W/d « Qs

Proportionality 3 d « Q

QD
Proportionality 4 s, = _§6_29
Sy
Proportionality 5 § « N
s

where
W = stream width

'Q = water discharge

d = stream depth

U




Q_ = sediment discharge

s
Sc = channel slope
D50 = median sediment diameter

S = sinuosity

S = valley slope
These proportionalities were developed by Lane (1955), Leopold and
Maddock (1953), and others from studies of changes occurring in the
morphology of rivers and canals.

12. Basically, these relationships generally predict the direc-
tion of change of a particular variable when the magnitude of another
variable is changed. These relationships also underscore the importance
of sediment discharge Qs as it may affect the magnitude of all the
hydraulic-geomorphic variables.

Measuring Geomorphic Changes

13. Geomorphic changes in fluvial systems may be detected by mea-
surements taken from maps, aerial photographs, and other imagery. Those
variables most easily measured on maps and imagery are: width, depth,
channel and valley slopes, and sinuosity. Generally, water discharge and
sediment size and discharge must be measured by other means or determined
from other studies. Although not quantitative, general observations
taken from maps and aerial photographs will also yield certain informa-
tion on general changes occurring along a stream. For example, the pres-
ence of knickpoints or waterfalls, the occurrence of changes in the char-
acter or amount of sediment, and the stability of point bars with
respect to aggradation or degradation may be important qualitative data

that can be seen on maps and more importantly, on aerial photographs.

Site and Nonsite Factors

14, A reach of a stream is only a portion of a larger system,
i.e., the drainage basin. The stream of interest or a reach thereof is

in some type of balance or equilibrium with the rest of the basin--

13
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a balance or equilibrium which may be affected by influences occurring
practically anywhere within the basin. Thus, a study of fluvial pro-
cesses at a particular site or reach often requires that studies be con-
ducted upstream and downstream of the particular site or reach and pos-
sibly at or along other tributary streams within the basin. The site or

nonsite factors are in both cases the conditions that affect the

hydraulic-geomorphic variables previously discussed. Generally these oA

factors include geology, soils, topography, climate, hydrology, and

human activities.
! 15. 1In this study, the site factors were those conditions occur-

ring along the studied streams, i.e., Tillatoba, Perry, Goodwin, and

Hotopha Creeks, as well as conditions occurring within their basins with

the exception of land use. As mentioned in PART I, these basins lie,

for the most part, in the Yazoo River Basin Uplands. The nonsite fac-

tors included conditions occurring on the trunk streams to which the 4
studied streams are tributaries and conditions on the upland slope above
the first-order creeks. Thus, the nonsite factors took into considera-
i tion conditions within the studied stream basins, the Delta or Yazoo

Basin Lowlands, and the Mississippi River downstream of the Delta.

Causes of Erosion

16. Generally, the causes of natural phenomena such as stream- ;
bank erosion cannot be categorically stated in terms of one or two spe-

cific and limited events, conditions, or circumstances. Ordinarily, LA

natural phenomena are caused by several conditions operating concur- }
rently and/or a sequence of interrelated events or circumstances. The
sequentiality of events is of prime importance, and each specific event
must be understood. The causative sequence also may pertain to space as
well as time. For example, an extremely high intensity meteorologic
event occurring in a restricted part of a drainage basin may contribute

to a flood event of short duration in the downstream portion of the

basin which results in localized bank loss. In such an example, the

solution to the bank erosion downstream involves information on flow

14
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characteristics at the site in question as well as particulars on the
catchment in which the event occurred and data on the stream system
between the catchment and the site which was eroded.

17. Material failures result from either or both increased shear
stress or decreased shear strength. Changes in stress and strength usu-
ally result from changes in flow and/or hydraulic geometry (Thorne 1978,
1980). For example, increased f..w¥w may result in a higher and critical
shear stress at the soil-water interface which results in the removal of
the soil particles in the banks of the channel. The degradation or ero-
sion of channel bottoms and the toes of channel walls (a change in
hydraulic geometry) may result in overstressing the soll mass in the
banks, slope instability, and failure of the banks. Decreased strengths
may result from liquefaction from drawdown and weathering of exposed
channel materials and from changes in water table conditions in the
banks. The identification of stress—-strength parameters and other geo-
logical and geotechnical characteristics of the soil and soil mass are
ncessary for the implementation of remedial measures for bank protection;
however, knowledge of these parameters may not necessarily provide
insight into sequential conditions beyond the site in question.

18. A categorization of increased stress and decreased strength
mechanisms of streambank erosion has been prepared by the American
Society of Civil Engineers (ASCE) Task Committee on Channel Stabilization
and is summarized below (Keown et al. 1977):

a. Attack of the toe of the underwater slope, leading to
bank failure and erosion. The period of greatest bank
failure normally occurs in a falling river at the medium
stage or lower.

o

Erosion of soil along the bank caused by current actionm.

¢. Sloughing of saturated, cohesive banks, i.e., banks
incapable of free drainage, due to rapid drawdown.

. Flow slides (liquefaction) in silty and sandy soil.
Erosion of the soil by seepage out of the bank (piping).

Im o e

. Erosion of upper bank, river bottom, or both due to wave
action caused by wind or passing boats.

19. The mechanism or types of erosion given above provide

15
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additional insight into the possible sequential events which lead to
failure. Further insight into this sequence may be learned from exami-
nation of the geomorphological circumstances pertaining to erosion.
Generally, streambank erosion may be categorized and manifested by three
processes or mechanisms that relate to the hydraulic geometry (or mor-
phology), which provide an indication of probable ultimate causes and
may be quantified. These three processes are: channel widening, chan~
nel deepening, and changing planform.

20, Channel widening is a process which is evidenced by an
increase in channel width, with or without a corresponding increase in
channel depth. Widening occurs because of the adjustment of the channel
to an increased sediment discharge, or to an increased sediment dis-
charge accompanied by an increase in flow; when both sediment discharge
and flow increase, widening and deepening occur. When only sediment
load increases, width increases while depth may decrease (Smith and
Patrick 1979). This type of streambank erosion roughly corresponds to
ASCE type b. Another name for this process or type is an aggrading
channel, implying that the channel has aggraded or filled in due to an
excess of sediments.

21. Channel deepening is a process of channel degradation
whereby the channel depth increases. The increased channel depth may
result in bank loss due to loss of stability of the higher and possibly
steeper banks. Thus, whether the bank loss actually occurs will be a
function of the geotechnical properties of the bank materials and of the
resulting bank geometry. The degradation results from increased flow
without an appreciable increase in sediment discharge. The increased
flow may result from an overall increase in the volume of water moving
through the channel and/or an increase in channel slope.

22. Changing planform includes changes in the location of the
channel. Examples of changing planform are: shifting of channels, cut-
ting off of meander bends; the downstream migration of meander bends,
and changes in the sinuosity or shape of meander bends. Generally,
these changes represent an adjustment of channel slope to conform with

changes in flow and/or sediment discharge.

16
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23. Generally, of the three processes of bank erosion, widening
and deepening are believed by the authors to be the most significant.
All involve changes in stream gradient. Therefore, the measurement of
gradients may, in many cases, reveal information on the nature of the
cause of bank erosion. These data may be taken from standard topo-
graphic maps as well as from actual channel survey plots.

24, The longitudinal profile of most small streams (seventh- or
eighth-order or smaller) determined from topographic maps will exhibit a
relatively smooth, concave-up curve gradually steepening in an upstream
direction. Abrupt changes in slope are knickpoints. Ordinarily, mean-
dering sandbed streams flowing in an alluvial valley do not exhibit
knickpoints, except for minor irregularities in bed load or bed form.
Knickpoints are most common in streams flowing on cohesive sediments or
flowing upon bedrock. For the bedrock-controlled stream, the longitudi-
nal profile is affected by the relative resistance of the rocks and sed-
iments over or in which the streams flow.

25, The detection of knickpoints or change in the position of
knickpoints on profiles of sandbed streams is an indication of change in
the stream's regime and evidence for the operation of the erosion mecha-
nisms. Brush and Wolman's (1960) laboratory results describe the chan-
nel alterations that occur as a knickpoint moves upstream in an over-
steepened sandbed channel. These channel alterations were:

a. The slope of the water surface and the slope of bed
below the knickpoint decreases with time.

b. As the knickpoint moves upstream, the channel directly
above the knickpoint first steepens and narrows.

el

Following the steepening, the slope becomes progres-
sively less.

d. At the lower end of the oversteepened reach, sediment
eroded from above is deposited as a dune, which advances
downstream and causes the channel to widen and locally
to steepen.

e. Following the passage of the dune, the slope again
flattens.

17
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Factors Initiating Bank Erosion

26. Having described these three causes of bank erosion, one

l must consider why streams widen, deepen, or change their sinuosity.

i One could also consider reasons for the changes in magnitude of the var-
I iables related by proportionalities 1-5.

I 27. Generally and rather simplistically stated, the hydraulic %4
l geometry may be changed by either natural conditions or human activities
} resulting in the initiation of an erosion mechanism. Natural changes in
the hydraulic geometry can be initiated by the periodic variation in
climate. Climatic events, particularly climatic extremes, are probably
the single most important naturally induced cause of erosion and of
other changes in fluvial systems. The common case of meander changes
and consequent bank erosion in sinuous streams brought about by large
floods is a familiar phenomenon. Human effects include changes in land
use, dam construction, and channel modification. A detailed discussion

of the effects of human activities is given in PART IV.
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PART III: SITE FACTORS AND CONDITIONS

28. This Part addresses the following two principal elements:

(a) those site factors such as geology and physiography and their influ-~
ence on erosion susceptibility and (b) the geomorphic condition or char-
acter of the sites. The geologic and physiographic factors described
below will form a basis for introducing the geomorphology of the sites,
and because of the general nature of these factors, they are also per-
tinent to the discussion of nonsite factors, given in PART IV. The geo-
morphology of the sites will be presented in terms of present conditions
and the identification of historical geomorphic changes by observations

from conventional aerial photography.

Physiography

29, The Yazoo River Basin is in the Coastal Plains Physiographic
Province. The basin can be divided into two distinct topographic sec-
tions: (a) the Delta or flatlands to the west and (b) the hills or
uplands to the east (Figure 1). The uplands area is the region of prin-
cipal concern in this report.

30. The Delta section, which covers approximately 6600 square
miles, is a part of the Mississippi River floodplain, but is now pro-
tected from Mississippi River overflows by levees. The Delta is a rela-
tively flat alluvial plain, sloping 0.7 ft/mile to the south-southwest
with local relief generally less than 40 ft.

31. The hills section covers approximately 6800 square miles in
the eastern half of the basin. The area is gently vrolling hill land
with up to 400 ft of relief. The greatest local relief occurs along the
bluff line separating the hills and the Delta.

32, The major tributaries of the Yazoo River in the Delta sec-
tion are Deer Creek, Bogue Phalia River, Sunflower River, and
Tallahatchie River. The original highly meandering patterns of these
streams, as well as the Yazoo River, have been extensively altered by

channelization, levee construction, and channel clearing.
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33. The major tributaries of the Yazoo River with headwaters in
the hills are from north to south, the Coldwater, Little Tallahatchie,
Yocona, and Yalobusha Rivers. The highly meandering patterns of these
streams have also been altered by channel clearing and channelization.
Flood control dams have been built on all four of these rivers.

34. There are several regional physiographic aspects of the

uplands area which, at least to a certain extent, control fluvial ero~

sion. Perhaps the most influential is the valley morphology. Generally,

the breadth of even the smaller valleys such as those of Perry and
Hotopha Creeks is quite wide. From observations of historical aeri~l
photographs, one sees that the meander belt of each of these small
creeks (prior to channelization) occupied only a small portion of their
valley and are thus underfit streams. A portion of these valleys con-
sists of small, low terraces. Regardless of the details of the age of
these valley deposits, the breadth of the valleys in respect to the
natural meander configuration provides ample space for changes in mean-
der configuration and meander amplitudes without appreciable influence
from the restraining effects of the valley walls.

35. With respect to channel degradation, the thickness of allu-
vial fill in these valleys may also be significant. There are indica-
tions that the alluvial fill may be quite shallow~-possibly no thicker
than 10 to 50 ft. It seems reasonable to presume that the relative
susceptibility to erosion of the alluvial fill material is greater than
that of the underlying Tertiary strata. The difference in suscepti-
bility is due to the more lithified nature of most of the Tertiary
material. Thus knickpoints can develop once degradation had proceeded
through the alluvial fill into the Tertiary strata. Once entrenched,
erosion and further degradation depend upon the relative lithification
of the Tertiary units.

Geology

36. The bedrock geology in the stream basins under consideration
consists of weakly lithified to unlithified Tertiary clays, silts, sands,
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and gravels; generally these Tertiary materials represent ancient flu-
vial environments. The geologic map and idealized stratigraphic column
are shown in Figure 6 and Table 1, respectively (Bicker 1969, Bennison
1975). Along the western edge of the uplands, the Tertiary sediments
are overlain by gravelly terrace deposits of the Citronelle Formation
(Pliocene or Pleistocene), which in turn are capped by Pleistocene loess.
Isolated exposures of Citronelle also are found capping hills to the
east beyond the bluff line. The Quaternary alluvium occurring in the
broad, flat valleys consists primarily of fine-grained floodplain depos-
its that apparently are rather thin.

37. From the standpoint of erosion, either sheet or fluvial, the
materials within the basins (including bedrock and residual and trans-
ported soils) possess several characteristics that enhance their erosion
susceptibility. They are as follows:

a. Clastic character. The relatively high proportion of

clastic materials, particularly sands and silts and the
absence of carbonates results in a high natural erosion
potential for the area.

|o*

Lack of lithification. The absence of appreciable
cements in the clastics produces materials so weakly
bound together that erosion is aggravated.

c. Dispersiveness. The fine-grained (Tertiary) clastics
(silts and clays) as well as the transported and resid-
ual soils possess a mineralogical and geochemical com-
position by which the discrete silt and clay particles
will disperse or go into suspension with very little or
no agitation. These materials are highly susceptible to
both sheet and fluvial erosion.

38. Bed-load sediments in the upland streams of the Yazoo River
Basin range from clay to gravel. The gravel is derived from the
Citronelle and terrace deposits located along the western edge of the
uplands. The bulk of the finer grain materials is derived from the
Pleistocene loess and Tertiary and Cretaceous beds, which dip gently to
the west-southwest.

39. The streambeds of Perry, Tillatoba, Hotopha, and Goodwin
Creeks are cut into Quaternary alluvial deposits (Figure 7). The

carbon-14 age dating of wood samples, such as shown in Figure 8, placed
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Figure 6. Geologic map of the Yazoo River Basin (Bicker 1969)
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a. View showing & log in
the carbonaceous zone

b. View showing the irregular top surface of the
carbonaceous zone and internal structures

Figure 8. Carbonaceous zone




the age of the samples at apprcoximately 10,000 years. Tertiary units
are present in streambeds only where the streams have cut into the val-
ley walls, Loess, Citronelle, and terrace gravels are generally located,

if present, in upper sections of the streambank or capping the hills.

Soils

40, The parent materials of the soils in the four study areas
were a mixture of Tertiary sands, silts, and clays, either in-place or
deposited as alluvium in the stream valleys. U. S. Department of
Agriculture (USDA) Soil Bulletins describe the soils as having moderate
to high dispersion characteristics (Table 2). The ease of dispersion of
the soils increases susceptibility to erosion (Huddleston, Bowen, and
Ford 1975, Galberry 1963, Scott 1970, and Thomas and Bowen 1967 and
1975).

Geologic and Geomorphic History

41. Now that a brief description of the physiographic and geo-
logic setting has beeun given and before the geomorphic conditions at the
studied site are presented, there is a need to review the geomorphic his-
tory of the Yazoo Basin to better understand the significance of the
site conditions. The relation between current processes and their evo-
lution, i.e., the geomorphic history, is considered to be both a site
and nonsite factor that can provide useful information on fluvial
processes (Schumm 1971).

42. As previously indicated, the Yazoo Basin Lowland, or Delta
as it 1s customarily called, is a portion of the Mississippi Alluvial
Valley (or Plain) and has been occupied at various times during the
Quaternary by the Mississippi River including its distributaries. The
Delta, as well as other parts of the Mississippi Alluvial Valley, has
been mapped in some detail, and although much remains to be learned, the
geologic and geomorphic history of this area is generally reasonably

well understood. On the other hand, the geologic and geomorphic history

25

e R A P N P V' Wt g i Priaeh T,

e AR E R L A e R e T L VR AT D i

o gl IWI ».;

AN vt

b B, 4 it aen L -

e B AR P N o

DR

RN




o e e er— Sty e At ———

of the Yazoo Basin Uplands is more poorly understood, particularly with
respect to the fluvial history of the upland streams. This lack of
knowledge results from the lack of subsurface information. Although
details of the Yazoo Basin Uplands are lacking, it is apparent that the
history of the upland streams is intimately related to that of the Delta.

43. Surface geologic mapping coupled with subsurface information
and limited radiometric dating give data on the Holocene and to a lesser
extent the Pleistocene and earlier history of the area. The subsur-
face information indicates that the oldest alluvial deposits are gravels
with sands that lie upon Tertiary strata. These sands and gravels of
variable thickness and depth are referred to as the substratum and
reflect a period of the evolution of the Delta when the former
Mississippi River was braided and was aggrading its valley. The age of
substratum deposits is considered to be Pleistocene. However, the
actual age at specific locations could be somewhat younger or older.
Overlying the substratum is the top stratum, which consists of a lower
sand facies and an upper facies representing rather recent stream depos-
its. The lower sand facies may be gradational with the underlying sub-
stratum. The top stratum is predominantly Holocene and locally
Pleistocene in age. In the Delta the uppermost fluvial deposits of the
top stratum consist of four general types of deposits. These are
braided stream, meander belt, backswamp, and alluvial fan deposits.
These deposits are shown on the map in Figure 9 and on the cross section
in Figure 10 (Kolb et al. 1968).

44, The braided stream deposits are terraces reflecting both
Holocene and Pleistocene sedimentation and, as such, are the oldest sur-
faces in the Delta. Five Mississippi River meander belts are recognized
within the Delta, of which the most recent is that occupied by the pres-
ent river. The backswamp deposits represent areas between meander belts
where overbank deposition occurred. The alluvial fans, which are not
shown on the map or cross section of Figures 9 and 10, are located
along the bluff line and were surfaces of deposition occupied by upland
streams as they emerged upon the alluvial valley.

45. The approximate chronology of the Mississippi River
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meander belts is given below (Saucier 1974):

Meander Belt Years Before Present
5 0~-2,800
4 2,700-4,800
3 4,700-6,000
2 5,900-7, 500
1 7,400-9,000

46. The braided stream deposition began prior to 12,000 years
before present and continued through 9,500 years before present.

47. With regard to the five identified meander belts, it is impor-
tant to consider that the abandonment of a particular belt and the
occupancy of another may not necessarily have been accomplished simul-
taneously. That is, divided flow could have occurred between an older
and younger belt prior to the abandonment of the older belt. There is
evidence that divided flow occurred between belts three and four and
that this took place between approximately 4500 and 2500 years ago.

48. The effects on upland tributaries of divided flow, variations
in degree of divided flow, and meander belt abandonment in the Delta
are generally unknown. It is not possible at this time to relate sur-
face or subsurface features in the upland valleys to events or episodes
in the Delta. Current studies at the USDA Sedimentation Laboratory at
Oxford, Miss., may ultimately provide some solutions. These studies
involved detailed mapping, radiometric dating, and subsurface work in
the upland stream valleys and interfluve areas for the purpose of eluci-
dating the evolution of these streams and their response to geomorphic
and environmental factors.*

49, It is apparent that the Mississippi River has acted as a
local base level for the upland streams and as such has controlled the
longitudinal profile of these streams as well as the profiles of any
other Delta streams to which the upland streams were tributaries. Both

the lateral and vertical movement of the Mississippi River causes

* Personal communication, Dr. Earl Grissinger, USDA Sedimentation Lab,
Oxford, Miss.
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changes in the gradient of the Delta and upland tributaries.

50. The response of the Delta streams to vertical base level
changes would include aggradation when the base level was raised and
degradation when the base level was lowered. The aggrading or degrading
conditions established in the Delta would proceed upstream into the
uplands.

51. The lateral movement of the Mississippi River by the develop-
ment of divided flow and the abandonment of meander belts would have
resulted in a change in the gradients of these tributaries. Whether the
gradients were increased or decreased would depend upon the location of
the new meander belt with respect to the bluff line. For example,
either the occupancy of a new meander belt or the increase in divided
flow of a new meander belt located nearer to the bluff line would result
in an increase in the gradient of tributary streams or degradation. On
the other hand, the occupancy of a meander belt farther from the bluff
line would result in a decrease in the gradient of tributary streams or
aggradation. The approximate times of these lateral base level changes
may be inferred from the data given in paragraph 45 and from Figure 9

which shows the meander belt locations. These changes are given below:

Meander Belt Direction of Years Before Effect on
Change Movement Present Tributary Gradients
1/2 to 3 West 6,000 Decrease
3 to 4 East 4,800 Increase
4 to 5 West 2,800 Decrease

52. The general geomorphic character of the upland valley indi-
cates that the upland streams have responded in the past to processes
similar to those described for the Delta. In particular, the evidence
for response to base level change 1s the presence of terraces in these
valleys. Generally, two or three low terraces can be seen on large-
scale aerial photographs for most valleys. No attempt was made in this
study to map these terraces; however, this mapping could provide some
insight on valley development and should be accomplished. Another char-
acteristic somewhat related to the terraces is valley size. Ordinarily,
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the upland valleys are appreciably larger than the streams meander belts;
i.e., the streams are underfit. The presence of terraces and the under-
fit conditions characterizing the upland valleys could also be attributed
to climatic changes occurring regionally as well as to avulsions occur-

ring in the Delta.

Tillatoba Creek

Present channel

53. Streambanks consist predominantly of Quaternary or Holocene
clay overlain by mottled silts or silty-clays, with a weathered soil
zone less than 1-ft thick at the top. A 1-ft- to 3-ft-thick carbona-
ceous zone containing logs, wood fragments, leaves, and nuts overlies the
clay in most places. Local sections of the streambanks consist of sev-
eral feet of fine- to medium-grain sand. Loess, Citronelle gravels,
and/or the Eocene Zilpha clay are present in the streambanks where the
streams have cut into a valley wall. The banks, which are 15 to 20 ft
high, are nearly vertical along most of the channels (Figure 11).

Streambeds are locally cut into Tertiary and Quaternary clays and sand.

Large quantities of sediments are present in the channels along the

e S

lower reaches of the North and South Forks.

Channel changes
54. Tillatoba Creek Basin is the largest of the four study sites.

ENPOUGN Fpe

Tillatoba Creek is located entirely in the Delta flatlands and was chan-
nelized in the 1920's (Figure 12). North, Middle, and South Forks are
located entirely in the uplands. Middle Fork is a tributary of South
Fork and is the only one of the three major upland streams to have been
partially channelized.

55. Man-induced changes during the early 1900's, such as land

1 A W v e I35 topt b Ao 7% e

clearing, farming, and channelization of small tributaries, changed the
hydaulic geometries in the Tillatoba Creek Basin. The most noticeable
change was the large increase in sediment load, which appears to have

caused more extensive channel changes in the smaller tributaries. Many

of the first-, second-, and third~order streams more than tripled in
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b. Middle Fork

Figure 11. Tillatoba Creek banks
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Figure 12. Tillatoba Creek before and after channelization

width by 1941, as the large influx of sediments from the gully streams
caused erosion of the streambanks. There was no major observable ero-
sion in the larger channels in 1941; however, the generally ragged
appearance of all channels in the basin and the entrenched appearance of
some of the smaller tributaries indicate that channel erosion was or had
been more active than in 1937. Conservation practices, which were
started in the 1930's, gradually reduced upland erosion, thereby reduc-
ing the sediment load in the streams (Figure 13).

56. Streambed and bank erosion are presently occurring at an
excessively rapid rate. Chronological sequences of aerial photographs
of several sites along each of the major channels show channel morphology
changes as the channel erosion or knickpoint(s) advances upstream.

57. Site Tl is located at the mouth of Tillatoba Creek and
includes approximately 1 mile of the channel (Figure 14). This section
of Tillatoba Creek was not channelized. Channel width doubled from
1937-79. The increase in width occurred at a uniform rate, rather than
having one short period of rapid bank erosion. The smaller meander
loops were cut away, while the larger meander loops have not been exten-
sively altered, except for the meander loop at the mouth. This meander
loop has been gradually eroded into a very tight loop, which will prob-
ably be cut off in the near future.

58. Site T2 is located at the confluence of North and South Forks,
6.8 miles (1957 stream distance) upstream from the mouth of Tillatoba
Creek and includes approximately one-half mile of Tillatoba Creek,
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Figure 13.

Conservation practices that decrease upland erosion
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Figure 14. Site Tl on Tillatoba Creek (Symbol "a" designates
Tillatoba Creek; "b" is Tallahatchie River, and "c" is the
Panola-Quitman Floodway; see 1979 photos.) (Continued)
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North Fork, and South Fork (Figure 15). No observable erosion occurred
on the vegetation-covered 1937 channels. Tillatoba Creek and a short
reach of North and South Forks at the mouths had more than doubled in
width by 1941. The banks in this area appeared as raw fresh cuts that
were being actively eroded. Frequent slumps and cave-ins in the upper
stretch at site T2 indicate bank erosion was very active there in 1941.
The channel width of North and South Forks had not increased signifi-
cantly from 1937 to 1941. The hanging tributaries indicate channel
degradation had been or was still active in 1941, Point bars were
better developed and more numerous in the lower stretch of site T2.

59. Bank erosion had increased the 1954 channel width of all
three channels at site T2 to double that of 1937, and the banks were
still eroding in 1954, especially the outside banks of the meanders.
Channel widths have continued to increase since 1954, The increases in
channel widths since 1954 have not been as extensive as the 1937-54
increases., 1Isolated stretches of previous streambeds at higher eleva-
tions than present streambeds and hanging tributaries indicate the chan-
nels have degraded. Point bars were numerous and well developed in all
channels from 1954 to present. The thalweg meandered in the wider chan-
nels, eroding the banks where it was deflected against the banks by
point bars.

60. Site T3 is located on North Fork, 3.9 miles (1962 stream dis-
tance) upstream from the mouth of North Fork and includes approximately
one-half mile of the channel (Figure 16). The only detectable bank ero-
sion in the 1937 channel was occurring on the outside banks of meander
loops. No significant observable changes occurred in channel dimencions
by 1941. The generally ragged appnarance of the channel indicates the
channel had been or was being eroded. The channel width in the lower
stretch of site T3 had more than tripled by 1954, and the banks in the
upper stretch were being very actively eroded. The extremely rapid rate
of bank erosion at T3 can be seen by comparison of the 1941, 1954, 1962,
1966, and 1976 aerial photographs (Figure 16). Bank width increased 283
percent from 1941-76. The wide channels had large, well-developed point

bars. The thalweg was meandering in wide sediment-filled channels,
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Figure 15. Site T2 in Tillatoba Creek Basin (Symbol "a"
designates the North Fork, "b" 1s South Fork, and "c"
is Tillatoba Creek (Sheet 1 of 3)
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Figure 15. (Sheet 2 of 3)
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Figure 16. Site T3 in Tillatoba Creek Basin, North Fork (Continued) J
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eroding the banks where it was deflected against a bank. Hanging trib-
utaries indicate the channel had degraded.

61. Site T4 1is located on North Fork at the mouth of Sandy Creek,
8.3 miles (1962 stream distance) above the mouth of North Fork and
includes approximately 1 mile of the North Fork channel (Figure 17). The
erosional effects of the large sediment loads from upland erosion were
more noticeable on the North Fork channel and its tributaries in the
upper reaches of the North Fork Basin. North Fork and Sandy Creek
channels appeared entrenched in 1937. The banks were steep and vertical
with numerous gullies cutting into them. The smaller drainages had hang-
ing channels. The chamnnel width of North Fork and Sandy Creek decreased
from 1937-79. The quantity of sediments in the channels also appears to
have decreased with time. The 1937-41 channel appears to have been
entrenched in an older channel that was two to three times wider than
the 1941 channel. North Fork channel is presently being rapidly eroded
approximately 2 miles downstream from site T4 and appears stable 1 mile
upstream from T4 (Figure 18).

62. Site T5 is located on South Fork, 5.8 miles (1954 stream dis-
tance) upstream from the mouth of South Fork and includes approximately
one-half mile of the channel (Figure 19). The 1937 channel was lined
with vegetative growth. No observable channel erosion is seen in the g
photos. The 1941 channel is slightly wider than the 1937 channel.

Judging from the rough fresh cut appearance of the banks, bank erosion

was very active, Hanging tributaries were being eroded near the trib- 3
utary mouths. The channel width of South Fork more than doubled from
1941-54. A very significant increase in channel depth occurred. The

increase in vegetative debris, absence of point bars, decrease in chan-

L Y

nel width, rough appearance in the upper stretch of the channel, and
irregular shape of the point bars in the lower stretch indicate the
upper stretch was being very actively degraded. The meander loop in the
lower stretch was cut off by man during the early 1950's. The channel
has continued to widen and deepen since 1954, but not as rapidly as
during the 1941-54 period. The elevation differences between the bed of

the cutoff meander loop and subsequent channel beds indicates the
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Figure 17. Site T4 in Tillatoba Creek Basin (Symbol "a'" designates
Sandy Creek, and "b" is North Fork.) (Continued)
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Figure 17. (Concluded)
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a. Approximately 1/2 mile downstream from site T4 (Sep 1977)

b. Approximately 1-1/2 miles downstream from site
T4 (Sep 1977)

¢c. Same area as ''b" (Feb 1980)

Figure 18. North Fork channel (Symbol "a' {s a stable channel, "b" is
an unstable channel, and "c¢'" shows several feet of bank erosion that
occurred from Sep 1977 to Feb 1980; the lower grade-control structure

on North Fork can be seen in the background of "b" and "c.")
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Site T5 in Tillatoba Creek Basin, South Fork (Continued)
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channel is degrading. Bank erosion has cut away the meander loops in
the channel, thereby shortening the channel.

63. Site T6 is located on South Fork 11.3 miles (1954 stream dis-
tance) upstream from the mouth and includes approximately 1.5 miles of
the channel (Figure 20). There are no currently observable areas of
significant bank erosion in this stretch of channel. A couple of sharp
meander loops were cut off by natural erosion between 1941 and 1954.

A knickpoint had advanced into the lower stretch of site Té by 1966.

The channel width in this area more than doubled as the knickpoint
advanced upstream. The knickpoint had advanced through site T6 by 1979.
The 1979 channel width was two to three times the 1954 width. Bank ero-
sion cut away the meander loops, thereby shortening the channel length.
Hanging tributaries were rapidly widening as the knickpoint(s) advanced
up them.

64. Site T7 is located on Middle Fork 3 miles (1954 stream dis~
tance) upstream from the mouth of Middle Fork and includes approximately
1 mile of the channel (Figure 21)}. The channel upstream from the bridge
was channelized prior to 1937. ‘Theie ﬁqs been no significant increase
in channel width between 1937 and 1977.% The roughness of the 1937 and
1941 banks indicates some bank erosion had occurred or was occurring,
but no major increase in channel width occurred. There was no observa-
ble increase in channel depth from 1937-77. The channel directly below
site T7 was being very rapidly eroded in 1977, as a knickpoint advanced
upstream (see 1977 photographs in Figure 21).

65. Site T8 is located on Middle Fork 11.5 miles (1954 stream dis-
tance) above the mouth and includes approximately one-half mile of the
channel (Figure 22). The upper half of Middle Fork was channelized in
three different stages: the headward stretch was channelized before
1941; the middle stretch, which includes site T8, in the early 1950's;
and the lower stretch in the 1960's. There was no significant observa-
ble erosion on the 1937 or 1941 channels. There were numerous large
splay deposits scattered across the 1941 floodplain; however, the chan-
nel does not appear to have been clogged with sediments. This section of

North Fork was channelized in the early 1950's. There was no significant
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South Fork (Continued)

Site T6 in Tillatoba Creek Basin,

Figure 20.
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Figure 21. Site T7 in Tillatoba Creek Basin, Middle Fork (Continued)
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Site T8 in Tillatoba Creek Basin, Middle Fork (Continued)
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observable erosion in the channel until 1968, when bank erosion had
noticeably widened the lower stretch of the channel. The entire chan-
nel in site T8 had nearly doubled in width and degraded several feet by
1976. Figure 23 shows the changes in channel geometry as a knickpoint
moved through the channel in 1974~-76. Figure 24 shows stereo views of
the knickpoint(s) advancing upstream. The knickpoint is cutting into an
erosional resistant Tertiary or Quaternary clay. Figure 25 shows a
December 1977 and February 1980 view of the waterfall at location ¢ in
Figure 24. The waterfall is being held up by this resistant clay. The
banks upstream from the waterfall have been eroded as the resistant clay
is gradually cut down. A similar waterfall has been formed in the resis-
tant clay directly downstream from the bridge since December 1977
(Figure 26). Note the large blocks of clay caving off at the waterfall.
A waterfall approximately 6 ft high formed in the resistant clay at the
mouth of the tributary directly downstream from the bridge in Figure 27.
Large blocks of the clay are caving off the oversteepened walls of the
bank and waterfall. The waterfall on the tributary is an indication of
the extensive degradation that has occurred on Middle Fork.

66. Tables 3, 4, 5, and 6 summarize the geomorphic changes on
Tillatoba, North Fork Tillatoba, South Fork Tillatoba, and Middle Fork
Tillatoba Creeks as observed on the chronological sequences of aerial
photographs and from field observations.

67. The only significant channel erosion in the 1937 Tillatoba
Creek Basin was in the small upland channels directly associated with
active gullying. All of the channels in the 1941 basin appear to have
been eroded to some extent. The only extensive erosion of a major chan-
nel occurred in Tillatoba Creek. The channel erosion appears to have
been advancing upstream on the major upland channels and their tribu-
taries since 1941. The 1954 longitudinal profiles of the major channels
are very irregular, especially in the lower reaches (Figure 28). Com-
parison of the 1954 and 1976 longitudinal profiles shows the channels
have degraded as the knickpoint(s) advanced upstream. The irregularity
of the 1976 longitudinal profile suggests that the channels are still
degrading. The convex upward shape of the longitudinal profile of
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Figure 23. Channel erosion from the upstream moveme..t of a knickpoint

at site T8 (See Figure 24 for a chronological sequence of stereo

photographs at locations a, b and ¢. Note the Indian mound to the
left of location b is being leveled in the 1976 photographs.)
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\ Figure 24. The upstream movement of a knickpoint at site T8
(See Figure 23 for locations a, b and c.)




a. December 1977

b. February 1980

Figure 25. Knickpoint upstream of the bridge at
location ¢ in Figure 23
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a. Dec 1977, looking downstream from
the bridge in Figure 23

b. Feb 1980, same area shown in photo a

Figure 26. Channel degradation downstream of the
bridge at location ¢ in Figure 23
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Tillatoba Creek in 1954 and 1976 indicates that further degradation of
the upland streams can be expected. Tillatoba Creek is cutting into an
erosion-resistant clay, which is retarding the upstream advance of the
knickpoint (Figure 29). The erosion-resistant Quaternary and Tertiary
clays form rapids and waterfalls in the stream channels throughout the
basin.

68. The upstream movement of the knickpoint(s) has been slower on
North Fork than on South Fork. The fact that the South Fork Basin is
two and a half times larger than the North Fork Basin and therefore has
more flow is one factor that could explain the slower upstream advance
of the knickpoint on North Fork. The major factor is that the more
erodible alluvial materials are thinner i: North Fork Basin than in
South Fork Basin and have been cut through, exposing more erosion-
resistant Quaternary clays in the lower reaches and Tertiary clays in
the vicinity of Little Creek. Figure 30 shows the changes in channel
area and length through time. Channel area refers to the planform
area of that stretch of channel and reflects the changes in the overall
channel width for that entire stretch of channel. Note the extreme bank

erosion at site T3. The knickpoint has been hung up on the very

Figure 29. Erosion-resistant clays in the
Tillatoba Creek channel
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erosion-resistant Zilpha clay (Tertiary) in this area. The prolonged
halt of the knickpoint at this point or general area resulted in exten-
sive bank erosion. The 1954 and 1976 longitudinal profiles of North
Fork tributaries reflect the upstream rate of movement of the knickpoints
on North Fork (Figure 31). The tributaries closer to the mouth of North
Fork have been degraded the most.

69. The knickpoint has advanced nearly to the head of South Fork.
The knickpoint, as of February 1980, was between Simmons Creek and the
head of South Fork, which is formed by the junction of Harper and Davis
Creeks (see Figure 3). Figure 32 shows the appearance of the channel in
this area. Figure 33 shows the upstream advance of the knickpoint on
South Fork. The knickpoint had just passed the junction of Middle and
South Forks in April 1954 and the junction of Simmons Creek and South
Fork in March 1979. The channel width of South Fork has tripled down-
stream from the knickpoint, and the channel length has been shortened as
bank erosion cut out the small meander loops. Figure 34 shows there has
been a decrease in channel length and a corresponding increase in chan-
nel area. The increases in channel area at all three sites on South
Fork show that bank erosion is very active along the entire channel.
Comparison of the 1954 and 1976 longitudinal profiles of Hunter and Sim-
mons Creeks, tributaries of South Fork, shows that channel degradation
is very active and quite significant on tributaries at the mouth and
head of South Fork (Figure 35).

70. The knickpoint advanced into the lower reach of Middle Fork
around 1954. The aerial photos in Figure 21 show the knickpoint was
advancing into the lower stretch of site T7 in 1977. Figure 36 shows
the channel area has increased at an apparently uniform rate at site T7,
while the channel length has slightly increased. The upper reaches of
Middle Fork had been channelized by the mid-1960's. The knickpoint(s)
advancing through site T8 probably resulted from the channelization
rather than from some downstream event on other channels since the knick-
point(s) on South Fork have not yet advanced through the lower reach of
Middle Fork.
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a. Live trees completely undermined by rapid
bank erosion

b. Rapid bank erosion cutting into a soybean field
harvested in the fall of 1979

Figure 32. Channel erosion from the upstream movement
of a knickpoint on South Fork in Feb 1980
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19543

Figure 33. The upstream advance of a knickpoint on
South Fork (Symbols "x" and "y" are used to corre-
late points.)
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Perry Creek

Present channel

71. Streambanks consist predominantly of a Quaternary clay over-
lain by mottled silts or silty-clay. These strata are locally overlain
by 5 to 10 ft of fine to medium sand or silty sand. A weathered silty- 1
clayey zone, 1 to 2 £t thick, overlies the sequence. The Quaternary
clay, being more resistant to erosion than the sandy-silty materials,
forms hard points along the stream course.

72. The present day channel is characterized by vertical or
nearly vertical banks, averaging approximately 10 to 15 ft in height.
Bank caving or slumping is common along the entire channel (Figure 37).
Large quantities of sand are present in the middle and lower reaches.
The upper reach is cutting into Quaternary clay and has little or no
bedload materials (Figure 38). The overall impression of the stream is
that of instability.

Channel changes

73. There has been a very noticeable change in the morphology of

Perry Creek in the last 40 years. Channel depth and width have in-

creased, while the length has decreased. A chronological sequence of !

stereo-aerial photos of four sites along Perry Creek shows the channel
changes that cccurred.

74. Site Pl is located at the mouth of Perry Creek and includes

' 1 mile of the channel (Figure 39). Bank erosion has been actively

widening the channel since before 1935. The banks are generally verti-

el R

cal with a raw, fresh-cut appearance. The rate of bank erosion or re-
treat was relatively slow with no noticeable rapid or sudden width in- :
| creases from 1935-63. Channel width increased less than 20 percent from i
’ 1935-€3. There was a noticeable increase in channel width at the mouth |
of Perry Creek in 1963. The width of the lower one-half mile of the

channel had increased approximately 50 percent. There were also numer-

ous slumps and cave-ins along this section of channel. Then from 1963-77

the channel width more than doubled.
75. Hanging tributaries and isolated segments of previous
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a. Oversteepened bank slumping

b. View showing large volumes of sediments in the
channel of the middle and lower reaches

Figure 37.

Typical bank erosion on Perry Creek, 1977




a. Upper reach

b. Lower reach; clay exposed in rapids

Figure 38. Erosion-resistant Quaternary clays
in Perry Creek, 1977
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Figure 39. Site Pl on Perry Creek (Symbol "a' designates Perry
Creek, and "b" is Batupan Bogue.) (Sheet 1 of 3)
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(Sheet 2 of 3)

Figure 39.
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Figure 39. (Sheet 3 of 3)
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streambeds at elevations higher than the present channel in the 1954,
1963, and 1977 streams show that channel degradation had been active
since at least the 1950's. Point bars were common in all of the chan-
nels. The quantity of sediments in the wide 1977 channel and the numer-
ous middle bars and braided appearance of the thalweg indicate an excess
quantity of sediments in the system.

76. Site P2 is located 3.7 miles (1954 stream distance) above the
mouth of Perry Creek and includes approximately 1 mile of the channel
(Figure 40). The outside banks of the meander loops were actively erod-
ing in 1935 and 1941, but did not appear to have been very active in
other areas. The channel width had nearly doubled by 1954. Hanging
tributaries and isolated segments of previous streambeds at elevations
higher than the 1954 bed indicate the deepening of the channel. The
steep, vertical banks had a raw, fresh-cut appearance. Continued bank
and bed erosion since 1954 has widened and deepened the channel, out at
a much slower rate than during the 1941-54 period. Bank erosion has
removed most of the small bends and meander loops and appears to be most
active on the outside banks of the larger meander loops.

77. Site P3 is located 5.6 miles (1954 stream distance) above the
mouth of Perry Creek and includes approximately 1 mile of the channel
(Figure 41). The 1941 channel was lined with vegetative growth. There
was no observable erosion in the channel. The vegetative growth along
the channel had been removed by 1954, and the channel appeared to be
rapidly widening and deepening. The beds of several meander loops, cut
off since 1941, were at elevations higher than the 1954 channel bed. .By
1954, the lower segment of the channel had nearly doubled in width since
1941 and all of the banks in this site had a fresh-cut appearance. The
1963 channel was two to three times as wide as the 1941 channel and bank
erosion still appeared to be very active. Channel depth had also in-
creased. Bank and bed erosion were still very active in the 1977 chan-
nel. However, the construction of the Interstate Highway 55 bridge in
1965 had altered the channel erosion above the culvert-type bridge. A
more detailed discussion ‘e effects of the bridge on channel erosion

appears later in this section.
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Figure 40.

Site P2 on Perry Creek (Continued)




Figure 40. (Concluded) (The 1977 photographs are
rotated approximately 45°.)




Figure 41. Site P3 on Perry Creek




78. Site P4 1is located 6.6 miles (1954 stream distance) above the
mouth of Perry Creek and includes approximately one-half mile of the
channel (Figure 42). This segment of Perry Creek was channelized prior
to 1941. Channel erosion at this site appears to have occurred at a slow,
relatively uniform rate since 1941. The most noticeable bank erosion
occurred in the upper segment where the meander loops have been slowly
straightened as the curves were eroded away. The hanging tributaries
show that channel depth has also increased since 1941. The thalweg is
presently cutting into Quaternary clays (Figure 38). Channel erosion
directly below site P4 has increased channel depth and widths in the same
manner seen at site P3.

79. Table 7 is a summary of the geomorphic changes on Perry Creek
as observed from the chronological sequences of aerial photographs and
from field observations.

80. The chronological sequences of aerial photographs of each of
the four sites of Perry Creek show there has been a very significant in-
crease in channel depth and width since 1935 and that these increases
have advanced upstream with time. The knickpoint on the 1954 longitudi-
nal profile is located between sites P2 and P3 (Figure 43). Interstate
fdighway 55 bridge, built at site P3 in 1965, acted as a grade-control
structure, preventing any further degradation from advancing past this
point after 1965. The prominent knickpoint on the 1977 longitudinal pro-
file shows the effectiveness of this culvert-type bridge as a grade-
control structure. The channel downstream from the culvert had degraded
6 to 8 ft by 1977 (Figure 44). The banks are steep with frequent cave-
ins, slumps, and undercut trees. The channel directly upstream from the
bridge appears stable (Figure 44). Cross sections of Perry Creek show
bank erosion has been more extensive downstream from the bridge than up-
stream (Figure 45).

81. Figure 46 shows the changes in channel area and length at
each of the four sites since 1937. There has been a general decrease in
channel length at all the sites, except for P4, which has changed very
little. Bank erosion cut away the meander loops and bends, thereby

straightening and shortening the channel. Figure 47 shows the decreases
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Site P4 on Perry Creek

Figure 42,
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Figure 44. Perry Creek at Interstate Highway 55 bridge
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in channel length from pre-1941-75. Channel area either increased or
decreased as the channel was widened. The combination of channel
widening and shortening determined whether there was increase in channel
area. Channel area increased at site P4 as the length decreased, while

just the opposite effect occurred at site P2.

Goodwin Creek

Present channel
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82. Goodwin Creek channel is similar to the channels of Perry and
Tillatoba Creeks. The bed and banks consist of Quaternary sediments
generally composed of a bluish clay or silty clay, which grades upward
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into a mottled silty clay, then to a weathered clayey-silty soil weath-
ered zone. Citronelle gravels are present in some of the banks in the
upper reaches.

83. The lower three-quarters mile of Goodwin Creek is 75 to
100 ft wide and has steep banks, 20 to 30 ft high (A to B on Figure 4).
Channel width from B to C varies from 125 to 450 ft, and the banks are
usually steep-~10 to 20 ft high. Channel width decreases upstream from
C with the widest section being approximately 100 ft wide; however, there
is little change in the nature of the banks.

84. The streambed from A to B (Figure 4) is cut into Quaternary
clay and has little to no bed-load sediments in the channel (Figure 48).
The bed from B to C (Figure 4) is locally cutting into clay; however,
there are large quantitfes of sand and gravel in the channel. The chan-
nel above C has a sand and gravel bed. Limonitic ledges, which occur
throughout the entire length of Goodwin Creek, form erosion-resistant
ledges across the channel in many places (Figure 49).
Channel changes

85. Goodwin Creek is the smallest of the four streams in this
study. Most of the land in the basin was under cultivation or was being
used as pastureland by 1940. A few gullies had developed on the steeper
slopes, but gullying was not a very serious problem in Goodwin Creek
Basin. The lower reach of Goodwin Creek was channelized prior to 1940.
Chronological sequences of aerial photos of four sites along Goodwin
Creek show the channel changes that have occurred since 1940 (Figure 50).

86. Site Gl is located at the mouth of Goodwin Creek and includes
one-half mile of Goodwin Creek and one-half mile of Long Creek (Fig-
ure 50). This segment of Goodwin Creek was channelized prior to 1940.
The prechannelization channel can be seen to the west (left on photo) of
the man-made channel. Channel erosion does not appear to have been oc-
curring at a very fast rate from 1940-68. There was a gradual overall
increase in channel width during this period. The only noticeable in-
crease in width occurred at the mouth and in the sharper bend. Bank
erosion had altered the straight, man-made appearance of the 1940 chan~

nel to a more irregular shape by 1968. From a planview, the channel
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Figure 48. Quaternary clay in the bed of Goodwin
Creek, near the mouth

Figure 49. Limonitic ledges in the bed of
Goodwin Creek at its mouth
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Figure 50. Site Gl on Goodwin Creek (Symbol "a'" designates
Goodwin Creek, and "b" is Long Creek.) (Continued)
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(Concluded)
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Figure 50




appeared to be developing a meander pattern.

87. There was a very pronounced increase in channel erosion after
1968. Bank erosion nearly doubled the width of Goodwin and Long Creeks.
The banks of both channels were very irregular and ragged with numerous
small gullies cutting back into the banks. Channel depth also increased.
Both channels had numerous well-developed point bars.

88. Site G2 is located 0.6 miles (1954 stream distance) above the
mouth of Goodwin Creek and includes one-half mile of the channel (Fig-
ure 51). Channel erosion was not excessively active in this channel seg-
ment from 1940-57. There was some bank erosion along the entire
stretch, with the most noticeable erosion occurring in the meander loops.
Degradation appears to have been very limited or insignificant. There
was a sudden increase in bank and bed erosion after 1957. Channel width
had doubled by 1978, and the depth had also increased. FPoint bars were
present in the channel throughout this time period (1940-78). Bank
erosion was very active in 1978, judging from the raw, ragged appearance
of the banks.

89. Site G3 is located 2 miles (1954 stream distance) above the
mouth of Goodwin Creek and includes approximately 1 mile of the channel
(Figure 52). The channel appeared stable in the 1940 and 1944 photos.
There was some vegetative cover and no observable bank erosion. The
channel below the bridge had nearly doubled in width by 1953 and had also
increased in depth. The width had more than tripled in the meander
loops directly downstream from the bridge. The channel directly up-
stream from the bridge was channelized between 1953 and 1957. Bank ero-
sion downstream from the bridge has continued to erode the meander loops
since 1957. The smaller loops have been completely cut away. The thal-
weg meander has increased as the large meander loop is enlarged by bank
erosion (Figure 53). Large point bars have developed and the channel
bed has degraded. Clay was exposed in the channel bed in 1978 (Fig-
ure 53). The channel banks upstream from the bridge have not been
significantly eroded.

90. Site G4 is located 4.6 miles (1954 stream distance) above the

mouth of Goodwin Greek and includes three-quarters mile of the channel
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Figure 51. Site G2 on Goodwin Creek
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Figure 52. Site G3 on Goodwin Creek (Continued)
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Figure 52. (Concluded)
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a. Bank erosion, 1978 (Notice the piping in Unit 1. Unit 2

is a mottled silty~sandy clay. Unit 3 is an erosion-

resistant clay. Note the channel feature in Unit 2, right
center.)

b. Erosion-resistant clay in the streambed, 1978

Figure 53. Goodwin Creek at site G3




(Figure 54). There was very little gully erosion in Goodwin Creek Basin;
however, the gullying that did occur was more prevalent in the upper
reach of the basin. The increased sediment load in the streams in this
area caused extensive bank erosion on the small first- and second-order

| streams. The increased sediment load also caused aggradation and very

noticeable bank erosion in the upper reach of Goodwin Creek. Bank ero-

sion at site G4 was very active in the 1940's, especially in the meander
loops. Continued bank erosion cut off one meander loop prior to 1953.
The rate of bank erosion appears to have decreased since 1953. A short
section of the upper reach was channelized between 1953-57. Bank ero-
sion could only be detected in a few isolated places in 1978. The chan-
nel had degraded some, but this could be from the removal of excess sed-

iments in the channel or from a knickpoint.

91. Table 8 is a summary of the geomorphic changes on Goodwin i
Creek as observed from the chronological sequences of aerial photographs f
and from field observations. !

92. Channel erosion has increased the overall depth and width of ’
Goodwin Creek since 1940. Comparison of the 1954 and 1977 longitudinal |
profiles of Goodwin Creek shows that the knickpoint in the lower reaches
! in 1954 had advanced upstream by 1977 (Figure 55). The irregularity of ?
the 1977 profile indicates degradation was still active in the channel.

The irregularities, in many instances, reflect erosion-resistant points

o 3h bt i b+ e
-

(l1imonitic and clay ledges) that have temporarily halted degradation
at that point.

93. Chronological sequences of aerial photographs at each of the

four sites on Goodwin Creek show there has been an increase in channel ?

width since 1940, Figure 56 shows the changes in area and length at

each of the four sites since 1940. Bank erosion has generally increased
the channel area and decreased channel length. The erosion of the

meander loop at site G3 has increased the channel area and length. The

L /s S . i+

channelization of site G4 decreased the channel length and temporarily

decreased the channel area. Cross sections of the 1977 channel show

very wide channels in the lower reach, which corresponds to the in-

creases in channel area (Figure 57). The decrease in channel depths
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Figure 54. Site G4 on Goodwin Creek (Continued) *
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Figure 54, (Concluded)
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along with a very significant increase in channel width show the "whip-
ping action" or lateral bank erosion resulting from a knickpoint hung up

on erosion-resistant points.

Hotopha Creek

Present channel

94. Hotopha Creek channel is similar to the channels of Perry,
Tillatoba, and Goodwin Creeks. The bed and banks consist of Quaternary
sediments in the same sequence described in the above-mentioned channels.

95. The modern Hotopha Creek channel is characterized by vertical
or nearly vertical banks that are 15 to 20 ft high, frequent cave-ins or
slumps, a rapid decrease in bed load in the upstream direction, deposi-
tion of relatively large quantities of sediment in the lower reaches of
the channel, and Quaternary clays exposed in the bed of the middle and
upper reaches of the channel (Figure 58).

Channel changes

96. All of Hotopha Creek, except for the approximate 3.3-mile
stretch at its mouth, has been chamnelized. The channel from A to B on
Figure 5 was channelized from 1958-61, and the channel upstream from B
was channelized prior to 1935. Chronological sequences of aerial photo-
graphs of five sites on Hotopha Creek show the channel changes that oc-
curred prior to and after the 1958-61 channelization.

97. Site Hl1l is located at the mouth of Hotopha Creek and includes
approximately one-half mile of the channel (Figure 59). Vegatative
cover lined the 1935 and 1940 channels. There was no observable bank
erosion occurring at this time. However, bank erosion appears to have
been very active in the 1949 channel. The 1949 banks were steep and
fresh-cut, and the meander loops had a sharp V-shaped inside bank,
rather than a U-shaped bank. Continued erosion of the banks had removed
all of the meander loops, except for the large, gently curving ones, by
1968. The post-1968 channel has a straight channelized appearance. The
banks of the meander loops on Little Tallahatchie River have been erod-

ing also.

103

LRy




Figure 58.

Upper reach

b. Lower reach

Upper and lewer reaches of Hotopha Creek
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Figure 59. Site Hl1 on Hotopha Creek (Symbol "a" designates
Little Tallahatchie River; "b" is Hotopha Creek.)
(Continued)




Figure 59. (Concluded)
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98. Site H2 is located at the beginning of the 1958-61 channeliza-
tion, 3.3 miles (1957 stream distance) above the mouth of Hotopha Creek
and includes approximately 1.5 miles of the channel (Figure 60). There
was no observable bank erosion on this stretch of channel prior to chan-
nelization. A 160-ft-wide path along the 3.3-mile stretch that was not
channelized was cleared of vegetative growth, stumps, debris, and other
obstructions. By 1963, two years after channelization, the unchan-
nelized segment appears to have been rapidly eroded, especially later-
ally. Channel width had nearly doubled since 1957. Several meander
loops had been cut off, and the smaller meander loops had nearly been
eroded away. The banks were vertical with fresh-cut appearances. There
were large splay deposits at the mouth of the channelized section. Chan-
nel width more than tripled from 1957-68. Bank erosion had removed all
of the smaller meander loops, giving the 1968 channel a channelized ap-
pearance. The cutoff meander loops were higher in elevation than the
1968 channel. Continued bank and bed erosion had widened and deepened
the channel by 1977. The large volume of sediments in the 1968 and 1977
channels caused the thalweg to become braided in several places.

99, Site H3 is located 6 miles (1963 stream distance) above the
mouth of Hotopha Creek and includes approximately 1 mile of the channel
(Figure 61). The only noticeable bank erosion, prior to 1957, occurred
at the State Highway 6 bridge, and the localized erosion was probably
related to the highway and bridge. A short section of the channel down-
stream from the bridge was channelized prior to 1935; however, there was
no noticeable erosion in the channel through 1957. The post-1961 chan-
nelized stream rapidly degraded and eroded its banks. Lateral bank ero-
sion, slumps, cave-ins, and gullying had altered the strailght man-made
appearance of the 1963 channel by 1977.

100. Site H4 is located 10.5 miles (1963 stream distance) upstream
from the mouth of Hotopha Creek and includes approximately 1.5 miles of
the channel (Figure 62)., This site is at the mouth of the pre-1935
channelization, which extends from approximately 1 mile below the junc-
tion of Hotopha and Marcum Creeks to the head of Hotopha Creek. The

pre-1935 man-made channel and prechannelization channel appear to be
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Figure 60. Site H2 on Hotopha Creek (Sheet 1 of 3)
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Figure 60.

(Sheet 2 of 3)




Figure 60. (Sheet 3 of 3)
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Figure 61. (Concluded)
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Figure 62. (Sheet 2 of 3)
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approximately the same width. Numerous splay deposits along the entire
length of the 1953 and 1957 channels in site H4 indicate the channel was
clogged with sediments or debris. There was no noticeable change in
channel width from 1944-57. The 1958-61 channelization enlarged the
channel. Bank erosion quickly altered the straight man-made appearance
of the 1963 channel to a more irregular shape by 1968. There was a
noticeable increase in channel width below the mouth of Marcum Creek by
1968. Continued channel erosion widened and deepened the channel by
1977. The 4= to 5-ft waterfall at this site in 1977 and 1979 indicates
the degree of degradation occurring in the channel (Figure 63).

101. Site H5 is located 11.5 miles (1963 stream distance) upstream
from the mouth of Hotopha Creek and includes approximately 1 mile of the
channel (Figure 64). This section of Hotopha Creek was channelized
prior to 1935. The 1958-61 channelization extended into .he lower part
of this site, There was no observable, significant erosion in the chan-
nel from 1944-57. The channels from 1944-57 appear to have had a
sediment-covered bed, while those from 1963 to the present appear to
have a clay bed. The degradation at the mouths of the tributaries in
1963 indicates the channel was degrading, which would account for the
removal of the sediments in the channel. The tributaries appeared as
entrenched channels by 1979. Bank erosion had noticeably increased the
channel width of Hotopha Creek in 1979.

102. Table 9 is a summary of the geomorphic changes on Hotopha
Creek as observed from the chronological sequences of aerial photographs
and from field observations.

103. The only noticeable or significant erosion seen on the pre-
channelization photographs (pre-1958) was occurring at the mouth of
Hotopha Creek. The 1953 longitudinal profile of Hotopha Creek shows a
prominent knickpoint approximately 2 miles upstream from the mouth (Fig-
ure 65). The smooth concave downward shape of the rest of the 1953
longitudinal profile indicates no significant degradation was occurring
elsewhere in the channel.

104. The 1958-61 channelization shortened the channel length
approximately 2.9 miles (Soil Conservation Service (SCS) 1961). The
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a. Long view

"

b. Close-up

Figure 63. Knickpoint at site H4 on Hotopha Creek,
1978 (See symbol "A" on the 1977 photograph in
Figures 62 and 65.)
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Figure 64. Site H5 on Hotopha Creek (Continued)




Figure 64. (Concluded)
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gradient in the channelized stretch was increased from about 7.8 ft/mile
to 11.1 ft/mile. A comparison of the 1961 and 1976 longitudinal pro-
files shows the channel has degraded up to 15 ft (Figure 65). The degra-
dation was caused by the continued upstream advance of the knickpoint
shown on the 1953 longitudinal profile and of subsequent knickpoints.

The increased gradient in the channelized section probably increased the
rate of speed of upstream movement of the knickpoint. Figure 66 shows
the stretch of Hotopha Creek between sites Hl and H2. The knickpoint

was approaching the lower part of site H2 in 1957. The channel in Fig-
ure 66 had nearly tripled in width by 1968.

105. There is a very prominent knickpoint at point A on the 1976
longitudinal profile (Figure 65). The knickpoint is cutting an erosion-
resistant clay and has formed a 4- to 5-ft waterfall (Figure 63). The
steep, unstable banks resulting from the channel degradation are slump-
ing or caving in. The channel directly downstream from the knickpoint
is 6 to 10 ft wider than the channel directly upstream from the knick-
point. Cross sections of the 1961 and 1976 channels show there is a
downstream increase in width and an upstream increase in depth (Fig-
ure 67). The downstream increase in width results from the slumping and
caving of the oversteepened banks and from bank erosion caused by the
increased sediment load. The banks are also being eroded by piping
(Figure 68).

106. The changes in channel area generally correspond to changes
in channel length. Figure 69 shows the changes in channel length and
area through time (1940's-1970's). The 1963 data were used as a zero
base since channelization (1958-61) significantly altered the channel
morphology. Sites Hl and H2 were not channelized in 1958-61; however,
the changes in channel morphology of these two sites has been very pro-
nounced. Bank erosion, as seen in Figures 59 and 60, shortened the
channel length at both sites. The channel area decreased at Hl and
increased at H2. The channel at site H3 decreased 74 percent in length
and 23 percent in area from 1940-63; but channel length had not changed
since 1963, while the area had increased 39 percent by 1977. Sites H4
and H5 were channelized prior to 1935, and H4 was enlarged in 1958-61.
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Figure 66. Hotopha Creek between sites Hl
and H2 (Site H2 is directly upstream.)
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Figure 68. Erosion of channel banks by piping

There has been no change in channel length at either site since 1940,
but the channel areas have increased, especially at H4. The overall
trend has been a decrease in channel length and an increase in channel
area or width. There have been some temporary decreases in channel area

when the channel has been widened, but also shortened, by bank erosion.

Erosion Control Measures

107. Numerous channel erosion control measures are being tested
in the Yazoo River Basin to determine the most economical and effective
means of reducing or preventing the erosion. As of 1978, 11 demonstra-
tion projects had been completed and were being monitored; three
projects were being constructed, and at least six more projects were
being planned. The projects include transverse and longitudinal dikes,
revetment, retards, riprap, the replanting of vegetative cover on banks,
and other types of bank cover. Most of the projects have been concerned
with the immediate protection and stabilization of eroding banks. At
least eight grade-control structures have been built or are being

planned to reduce or prevent further channel degradation and
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accompanying bank erosion. Figure 70 shows two of the grade-control

structures constructed in Tillatoba Creek Basin.

108. The effectiveness of the channel erosion control methods
has not yet been determined as of this date. The substantial increases
observed in channel width as a knickpoint advances upstream, especially
where the knickpoint is retarded by erosion-resistant materials, such as
clay or a limonitic ledge suggest that there could be problems in main-
taining some grade-control structures.

109. In addition to the various channel erosion methods being
tested, the following cooperative efforts have been initiated (U. S.
army Corps of Engineers 1978):

a. A joint venture with the Science and Education
Administration--Federal Research, USDA Sedimentation
Laboratory at Oxford, Miss., to define and monitor
amounts, sources, direction, and time of travel of sedi-
ments. This will include complete analysis of the
drainage basin morphology, geology, soils, land use,
vegetation, basin stratigraphy, hydrology, climatology,
and stream hydraulics. Particular emphasis will be in
the Goodwin Creek Basin, and the results will be used to
determine the performance of selected channel stabiliza- }
tion methods and to determine the influence of grade- 1
control structures on channel stability.

b. A program to test a wide variety of vegetative controls
both on the floodplain and on the beds and banks of the :
streams has been initiated with the combined efforts of !
the USDA SCS agronomy teams for an ll-state area. g

Ie]

A complete inventory of SCS bank stabilization efforts ;
for the past two decades. This will include location, !
type, and purpose of stabilization; results and main- g
tenance; effects on geology and soils; stream and basin : i
hydraulics and hydrology; and land use.

d. A cooperative agreement with the U. S. Army Engineer
Division, North Central, of the Corps of Engineers to
use Dr. C. T. Yang's concept of "Unit Stream Power" to
develop a more theoretical approach to stream
stabilization.

PR

Discussion

110. Generally the results of these historical geomorphic analy-

ses have revealed that during the last 40 years, the studied stream
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a. Lower structure in North Fork, 4-ft drop

b. Middle Fork, 13-ft drop

Figure 70. Two grade-control structures in
Tillatoba Creek Basin
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basins have undergone major, abrupt changes of channel position, drastic
changes in sinuosity, increases in channel widths of 200 to 300 percent,
and tens of feet of channel deepening. These changes have occurred so
quickly and are so extensive in magnitude and distribution that it is
unlikely they represent normal stream behavior. Of course, sinuosity
change, widening, and deepening are normal fluvial processes that
individually (and under certain circumstances collectively) contribute
to the evolution of fluvial regimes, However, it will be necessary to
consider what conditions, natural or human-initiated, could cause these
processes to occur so quickly and over so wide an area. Furthermore,
one must consider whether the assumed baseline conditions of 1937 are
truly typical.

111. The assumption that the 1937 imagery revealed typical chan-
nel abandoment conditions seems acceptable for two reasons. The first
reason is the stable development of vegetation along the streambanks,
indicating that the stream had not actively shifted position either
horizontally or vertically. The second reason is the absence of rela-
tively recent terraces on the floodplain. As previously mentioned,
terraces do occur; however, they are predominantly located near the
bluff line. If the 1949-80 channel changes were common phenomena during
the last 500 years, for example, one would expect to see prominent sur-
face evidence of their occurrence. With respect to terraces, it should
be pointed out that the post-1940 degradation has, in fact, resulted in
the development of a new floodplain at an elevation of 20 ft or so
below the pre-1940 surface, which is now a terrace.

112. The imagery has shown the progressive widening of stream
channels. Channel deepening can also be seen on the imagery, but this
deepening was not quantified. The evidence on the aerial photographs,
including visible knickpoints and hanging tributaries, and field evi-
dence supported the conclusion of active degradation. Having estab-
lished that both widening and degradation have occurred, one must con—
sider the relations between the two. That is, have both width and depth
increased due to increases in both water and sediment discharge, or has

increased water discharge initiated deepening which in turn produced
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widening due to the instability of channel walls? These two possibili-
ties may be explained by the proportionalities below:

Increased Water and Sediment Discharge
W/d = Qs and d = Q

or

Increased Water Discharge
d=Q

113. The relations above provide an explanation of the influence

of both water and sediment discharge on producing the observable geo-
morphic conditions. These relations also underscore the need for verti-
cal control. The lack of quantified data on channel degradation and
sediment discharge is unfortunate, but perhaps not crucial to the under-
standing of the processes.

114. The influence of upland-derived sediment discharge may be
determined from the imagery analyses. Generally, the observations from
aerial photography suggest that excessive sediment discharge may be
restricted to the uppermost portions of the basins and are thus primar-
ily affecting the first- and second-order streams. On the other hand,
the sediment observed on the lower reaches has been derived primarily
from the channel banks by headcutting and subsequent bank erosion. The
observations in the field, as well as of the imagery, suggest that the
basin streams investigated in this study are not particularly overloaded
with sediment. One is more strongly impressed by the amount of degrada-
tion than by the accumulations of sediment. This impression is due, in
part, to the infrequency of extensively braided reaches. Probably the
most conclusive negative evidence is the absence of any apparent down-
stream progression of sediment fluxes. One should suppose that if both
increased water and sediment discharge were occurring, there would be
an indication of this progression. These lines of evidence strongly
suggest that increased discharge of both water and sediment are not
primary contributors to geomorphic change in the Yazoo Basin.

115. The evidence against the significant influence of sediment

discharges is generally in accord with the nature of land use within the
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uplands, which will be more fully discussed in PART IV. Briefly, im-
proved land use practices in the upland areas over the last 40 or 50
years are believed to have greatly reduced the sediment loads entering
these small watersheds.
116. 1f increased sediment load is not the primary contributory
cause of geomorphic change, then increased water discharge may be. ‘
There are two primary ways in which water discharge may be increased. ‘
The first involves a shorter runoff time for overland flows resulting in
higher velocities of flow within the basin. Such conditions could occur
by urbanization and paving of large areas and by changes in ground
cover. The latter would be a more appropriate consideration in this
portion of the Yazoo Basin and might include timber stripping on the
hillslope, and floodplains and conversion to grazing. The second way in
which water discharge may be increased is by an increase in stream
gradient, leading to more peaked hydrographs. For a given reach, the
channelization of that reach would increase the reach's slope, and
channelization downstream of a given reach would produce a break in
slope or knickpoint at the head of the channelized section. Climatic
conditions are discussed in PART 1IV.
117. Generally, the data derived from the imagery provide some
indication of how the flow has been increased. The evidence is found in .
the upstream progression of channel instability. Bank erosion, sediment
accumulation, and other changes occur in the lower reaches first and

progress upstream accompanying the advance of the knickpoint.

118. The observations and tentative conclusions derived mainly ‘f
from aerial imagery and which have been given in this part of the report 4
indicate that channelization and related engineering improvements are
the primary causes of bank erosion, and agricultural practices are of §

secondary importance. PART IV describes these agricultural activities.
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PART IV: NONSITE FACTORS

119. This Part of che report will address those factors, specifi-
cally climate and human activities, that are operating basin-wide or
outside of the basin, excluding the geology, soil, hydrology, etc. of
the area, which were described in PART 1II. Tectonism has been sug-
gested as one possible cause of channel erosion in the Yazoo River Basin. -
There is presently no data to support this idea, so it will not be dis-

cussed in this report.
Climate

120. Climate is considered to be a primary cause of streambank
erosion only to the extent that it is the driving force behind all hy-
urologic processes, including the geomorphic development of fluvial sys-
tems (Gregory 1976). A systematic change in the magnitude or frequency
of climatic events is not considered to be the principal cause of mas-
sive and extensive historica. bank failure, although extreme climatic
change can, by itself, produce a dramatic change in fluvial systems.

121. Average yearly rainfall records for the Yazoo River Basin
from 1895-1976 do not show any drastic changes in rainfall patterns
(Figure 71) (U. S. Weather Bureau 1895-1976). One apparent change is
the recent increase in the numbér of years of extremely high average
rainfall; however, the brevity of the period of record does not provide
a basis for identifying any major change. Any stream reaction to changes
in channel configuration, vegetative cover in the basin, or other fac- :
tors influencing a fluvial systeﬁ'afe partially controlled by rainfall. i
The randomly alternating wet and dr& periods have not initiated any :
major channel erosion, but do have strong control on the rate of channel
erosion resulting from other causes. For example, extremely wet periods,
such as the one from 1s44-51, or just one year of abnormally high rain- i
fall, such as in 1932, tend to accelerate the erosional processes

initiated by other factors.
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Human Activicies

122. The most significant factors contributing to bank erosion in
the Yazoo Basin Uplands are human activities. These activities have
initiated, and are still contributing to, major changes in the fluvial
regimes of the basin's streams. The activities directly and indirectly
cause bank instability. An example of direct causes of erosion are re-
moval of bank vegetation; indirect causes, which are p.obably more sig-
nificant, include overextensive agriculture leading to high water dis-
charges and high sediment yields, channelization resulting in higher
stream gradients and higher velocities, and dams (Bray and Kellerhals

1979).

Land use

123. For the purposes of this discussion, land use includes
agricultural uses (and related activities) and urbanization. Basically,
these two activities may affect hydrologic and geomorphic conditions
both locally and regionally by producing changes in water discharges and
sediment yields. Urbanization (which generally contributes to increased
water discharges) is not a major factor affecting the streams under
study and will not be discussed.

124. The effects of agricultural activities on natural fluvial
regimes depend principally upon the extent to which these activities are
so extensive or poorly conducted that they contribute to erosion. Thus,
the clearing of natural vegetation and the cultivation of crops or over-
intensive grazing of livestock may lead to erosion on the less well-
protected surfaces and, as a consequence, to increased runoffs to the
basin's streams and also higher sediment loads in these streams
(Figure 72).

125. Logging and land clearing for agricultural use has removed
most of the natural vegetative cover from the Delta. The chronological
sequence of aerial photographs in Figure 14 illustrates how the Delta
has been systematically cleared. The flat nature of the Delta required
that the drainage systems be improved before much of the land could be ;

used for agricultural purposes. Many of the natural drainage systems : i
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Figure 72. Upland soil erosion resulting from
agricultural practices
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were cleaned and enlarged, and canals or drainage ditches were dug.
Drainage improvements included 3054 miles of ditches, 320 miles of
levees, and 4 pumping plants by 1941 (Olsen and Dunn 1941). 1he effects
of land clearing, farming activities, and improved drainage have bYeen
increased water and sediment discharges into the stream systems. The
increase in water discharge has been much more significant than the sedi-
ment discharge, since the flat nature of the Delta does not lend itself
to sheet or gully erosion.

126. Historically, the Yazoo Basin Uplands have indeed been sub-
jected to overextensive agriculture. During the late 1800's and early
1900's logging and land clearing for agricultural purposes removed much
of the natural vegetation. This clearing and subsequent cultivation re~
sulted in extensive sheet and gully erosion, increased runoffs, and
higher stream flows (Tharp 1933). Although the basin had probably been
subjected to repeated flooding prior to the days of land clearing, these
resulting higher flows produced more serious and perhaps more frequent
flood threats and hazards to agriculture in low-lying areas both in the
Yazoo Basin Uplands and in the Delta area downstream.

127. Sheet and gully erosion in the uplands produced large vol-
umes of sediments, which were introduced into the basin's streams.

These sediments locally clogged the channels and also locally and partic-
ularly in upper reaches of the basin veneered the floodplain itself
(Happ, .ittenhouse, and Dobson 1940, Happ 1968). As indicated previ-
ously, these channel sediments further aggravated the flood problems.
Also, agricultural use of the floodplains was decreased by the nonpro-
ductive nature of these sandy and silty sediments. During this period,
streambank erosion was probably also a problem due to lowering of chan-
nel capacities by the aggradation in the channels. One would suppose
that these sediments would restrict and redirect flows, causing bank
erosion and channel widening; however, bank erosion was not reported as
a major problem in that period. Another effect of these increased sedi-
ment loads was to restrict navigation of the larger streams.

128. By the late 1940's upland sheet erosion and gullying had

decreased significantly (Figure 13). The decrease was due to improved
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land use and the construction of impoundments in the uplands. These im-
poundments were intended to decrease surface runoff and act as sediment
traps, thereby decreasing sediment loads in tributary streams and de-
creasing flooding.

Channelization

129. Efforts were begun in the late 1800's and early 1900's to
improve drainage. These improvements consisted mainly of channelization
of basin streams and were made under the auspices of private individuals
as well as by government agencies. Between 1888 and 1941 more than 300
drainage districts were organized within the Yazoo Basin to combat the
flood problems (Olsen and Dunn 1941). As of 1 January 1941, various
organizations had constructed approximately 3563 miles of ditches and
310 miles of levees. However, no systematic procedure was followed in
the construction of drainage works, as shown by this statement by Olsen
and Dunn (1941): "Big ditches flow into little ditches which empty into
unimproved badly congested, winding streams or sluggish bayous."

130. Channelization is an engineering procedure in which the
capacity of a slow-moving, meandering stream is increased by cutting off
selected tortuous meander loops and by widening and deepening the stream
as required. The improved capacity derived from these actions channels
high flows along the modified reach, thereby decreasing flooding and
possibly improving navigation. Although the alleviation of flood poten-
tial is in itself beneficial, adverse geomorphic conditions may also
result from channelization. These adverse conditions arise mainly from
the shortening of the stream by cutting off meander loops and conse-
quently increasing the slope of the channel. Since the magnitude of the
natural (original) slope had developed as a consequence of a given flow
and sediment discharge transported through a given channel cross section,
a change in slope magnitude will produce a change in some other hydrau-
lic quantity.

131. Proportionalities 4 and 5 (PART 1I) indicate the direction
of these changes. For example, Proportionality 5 predicts that decreas-
ing sinuosity (such as by straightening) must result in a decrease in

the ratio of valley slope to sediment discharge. Because the valley
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slope is affected mainly by major tectonic processes and will therefore
remain essentially constant, there must be an increase in sediment dis-
charge, thus decreasing the ratio of valley slope to sediment discharge.
The sediment is thus removed from the channel, resulting in degradation
and bank erosion. Knickpoints produced by the change in slope will move
upstream to such a point where further downcutting is stopped or at
least retarded by the presence of resistant material in the streambed or
a new equilibrium is achieved. The upstream movement of knickpoints is.
called headcutting. Headcutting may, in the same fashion, proceed up
upstream tributaries. The processes caused by channelization are shown
in the flowchart in Figure 73.

132. Degradation produced by the upstream movement of the knick-
point will also be acciompanied by aggradation. Thus, the sediments re-
moved by headcutting will be transported some distance downstream where
they will be deposited. These sediments will probably not remain in-
definitely at the location of initial sedimentation, but will eventually
be moved out and redistributed farther downstream. The net effect of
both downstream aggradation and upstream degradation will be the gradual
elimination of the knickpoints and a smoothing of the longitudinal pro-
file. Also, bank erosion may be initiated by either degradation or
aggradation.

133. The fact that headcutting may be quite active requires that
consideration be given to the possible effects of channelization not
only at or along the stretch under study, but also many miles downstream
or upstream of the site(s) being considered. 1In PART III, in which the
local geomorphology of the sites was described, possible effects of
channelization at and along the stream stretches under study were dis-
cussed. Therefore, the remainder of this section on human activities
will address the influences of the channelization of the streams and
rivers downstream from the study sites.

134, Mississippi River. Agricultural practices; urbanization;

channelization; and the construction of locks, dams, and levees have
altered the hydrologic regime of all the streams in the Mississippi River
Basin. Man-made cutoffs on the stretch of the Mississippl River
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Figure 73. Generalized flowchart showing processes initiated

by straightening a section of stream channel
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bordering the state of Mississippi have alone shortened the river dis-
tance by 151.8 miles (Figure 74) (Mississippi River Commission 1968).
Schumm (1971) stated that without knowing a great deal about the problems
of this river, one could speculate that the straightening has created
severe problems of channel stability. It is impossible to determine how
much each individual factor has affected the hydrologic regime, but the
collective effects of all factors have influenced channel stability
(Winkley 1977). The increasing irregularity of the 1932-75 longitudinal
profiles of the Mississippi River from Cairo, Ill., to the Gulf of
Mexico shows the instability of this section of the river (Figure 75).
As the instability of the major trunk stream, the Mississippi River, is
progressively transmitted to smaller tributaries, the effects become
more noticeable.

135. Yazoo River Basin-~Delta streams. All of the major streams

that drain the Yazoo River Basin Uplands have been channelized to some
extent. The Yazoo-Tallahatchie-Coldwater River system was shortened
approximately 88.2 miles by meander cutoffs constructed between 1921 and
1953 (Table 10). The construction of Pompey Ditch in 1921 shortened the
Coldwater River about 24.9 miles, increasing the gradient from approxi-
mately 0.7 ft/mile to approximately 1 ft/mile. Channelization of the
Yazoo, Tallahatchie, and Coldwater Rivers from 1940-43 shortened their
channels about 61.2 miles. The Jonestown Cutoff on the Yazoo River in
1953 further shortened the channel about 2.1 miles. Channelization of
the Yazoo-Tallahatchie-Coldwater River system increased the gradient
from approximately 0.4 ft/mile to approximately 0.8 ft/mile.

136. The prechannelization and postchannelization longitudinal
profiles of the Yazoo-Tallahatchie-Coldwater River system are both very
irregular (Figure 76). The irregularities can be attributed to several
sources, such as degradation, geologic controls, and aggradation. The
increased gradient of the Yazoo-Tallahatchie-Coldwater River system re-
sulting from channelization, increased water discharge resulting from
agricultural practices, and the instability of the Mississippi River are
some of the factors that could have caused degradation in the Yazoo-

Tallahatchie-Coldwater River channels.
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Figure 74. Man-made meander cutoffs on the Mississippi River
(Mississippi River Commission 1968)
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137. The prominent knickpoint at point B in Figure 76 resulted
from geologic controls. The lateral extent of the geologic unit can
easily be seen on the planview of this section of the river (Figure 77).
The channel between elevation 140 and 125 is cutting in ancestral Mis-
sissippi River braided stream (Kolb et al. 1968) deposits veneered by
clayey backswamp-type deposits. The veneer deposits consist of 10 to
30 ft or erosion~resistant oxidized clay, which grades downward into
coarser braided stream materials. The channel in the erosion-resistant
clay has a gentler slope and small, tight meanders. The channel above
elevation 140 and below elevation 125 is cutting in point bar deposits
consisting of sediments ranging from sandy clays to sandy silts (Kolb
et al. 1968). The point bar deposits could be from any of the ancestral
Mississippi River systems that have occupied that area. The channels
in the more easily eroded point bar deposits have steeper slopes and
large closed meanders. The effects of the geologic control can still be
seen on the 1960's longitudinal profile even after the extensive channel-
ization of this section of Tallahatchie River,

138. Increased sediment loads caused by upland erosion clogged
many of the Delta streams during the early 1900's. Olsen and Dunn
(1941) reported that many of the important Delta waterways that were
once used by steamboats were so filled with sediments from upland land
erosion that many were now unusable. The construction of flood control
dams on the major upland rivers and the soil conservation practices be-~
gun in the 1930's have reduced the sediment loads in the Delta channels.

139. Yazoo River Basin--upland streams. The major rivers drain-

ing the uplands have been extensively channelized since the early 1900's.
Most of the channelization has been since 1939 and is associated with
the construction of flood control dams, which will be discussed later in
this report. Since channel alterations below the dams do not affect the
channels above the dam and all of the study areas are downstream from
the dams, only the channelization below the dams will be discussed.

140. Yocona and Little Tallahatchie Rivers were the only major
upland rivers that were extensively channelized prior to 1939. The
Panola-Quitman Floodway, constructed in the early 1920's, cut off the
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Figure 77. Change in meander pattern on the Tallahatchie
River due to geologic control
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lower 26.3 miles of Little Tallahatchie River and 11.1 miles of Yocona
River (Figure 78). The floodway reduced the stream distance from the
head of the floodway to the junction of Tallahatchie River and Tillatoba
Creek from approximately 52 miles to 26.3 miles. The 67-mile stretch

of Yocona River above the floodway was also channelized in the early
1920's, reducing the stream distance to 45.2 miles. The new Yocona
River channel on a grade of about 2.5 ft/mile enlarged rapidly by ero-
sion until its average cross-sectional area had doubled.

141. Little Tallahatchie and Yalobusha Rivers were channelized
after the flood control dams were built. Five meander cutoffs were
made on Little Tallahatchie River in 1941. The stream distance was
shortened approximately 2 miles. Local interests straightened and im-
proved the channels of the Yalobusha and Skuna Rivers and many of their
tributaries in the upper basin above Grenada Reservoir in the 1910's and
1920's. Thirty cutoffs, 1 in 1939 and 29 from 1951-54, shortened the
Yalobusha River approximately 18 miles between its mouth and Grenada Dam.
The gradient was increased from about 0.9 ft/mile to about 1.2 ft/mile.
The 1940 and 1954-57 longitudinal profiles of Yalobusha River are convex
upwards in the lower reaches of channel, indicating the channel was
degrading (Figure 79). The knickpoint at the bluff line had become more
exaggerated from 1940-57. The knickpoint appears to be hung up on a
hard point, possibly Tertiary bedrock or Quaternary clay. The 1965
longitudinal profile shows that the exaggerated knickpoint is still at
the bluff line. The density of the data points for the 1965 longitudi-
nal profile better emphasizes the irregularity of the channel bed.

142. Hotopha, Goodwin, Tillatoba, and Perry Creeks and the
streams that connect each of these creeks to their ultimate base level,
the Gulf of Mexico, have all been channelized or shortened to some ex-
tent. The overall channel shortening amounts to approximately 10.5 to
13.6 percent of the prechannelization channel lengths (Table 11). This
reduction in channel length increases the gradient, thereby increasing
the flow velocity. The increase in velocity with no apparent increases
in sediment load will result in channel degradation. Comparison of

prechannelization and postchannelization longitudinal profiles shows
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base level, the Gulf of Mexico
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there has been increased channel degradation.

Dams

143, Sites. TFour flood control dams have been constructed in the

Yazoo Basin Uplands. Three of these structures, shown in the table be-

i ! low, are located in the basins of the four studied streams.

! Date Association with

3 Dam River Completed Study Site

{ Grenada Yalobusha 1954 2 miles upstream from

; mouth of Batupan Bogue
S Enid Yocona 1951 7 miles upstream from

mouth of Peters Creek
' Sardis Little 1940 8 miles upstream from
Tallahatchie mouth of Hotopha Creek

144. Discussion. The construction of a dam on a stream does not
necessarily mean that adverse hydrologic or geomorphic conditions will
occur. However, there exist significant data that show that adverse
conditions are possible and that the effects of dams should always be
considered when studying hydrologic or geomorphic phenomena.

145, From the standpoint of hydrology and geomorphology, flood

control dams such as the ones under consideration may cause changes in

j fluvial regimes both upstream and downstream of the dam. These changes

are well known and have been summarized by Simmons (1979). Since the
streams under study are downstream from the dams, upstream effects will
not be considered.

146. Potential downstream changes result from two conditions
which the dam imposes on the natural hydrologic and sedimentologic en-
vironment. These are: (a) flattening and decreasing flood hydrographs,
and (b) the cessation of bottom sediment movement past the dam. The
actual geomorphic impact of these two conditions is dependent upon the
relative importance of (a) versus (b), size and volume of sediment trans-
ported, hydrologic environment, and the actual operation of the dam.
Downstream geomorphic changes result when there develops disequilibrium con-
ditions between the regulated flow, sediment movement past the dam, and

the size and volume of sediment introduced into the mainstream channel

by downstream tributaries.
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147. 1f disequilibrium conditions prevail, two types of geomor-~
phic changes may occur downstream: (a) sedimentation in channel (fill-
ing) and (b) degradation or downcutting.

148. Channel filling occurs when downstream tributaries carry
more sediments into the mainstream than the regulated flow from the dam
can transport. Degradation results from the scouring by the sediment-
free water released from the dam. Both of these geomorphic changes may
be explained semiquantitatively by examination of the proportionalities
described in PART II. Both changes may also result in at least local
bank erosion by the mechanisms of widening and degradation, also given
in PART II. The impact of dams on the subject streams is given below.

149. Impact of the dams. In considering the downstream effects

which Sardis, Enid, and Grenada Dams had on their respective channels,
the effects of channelization that occurred prior to or in conjunction
with the construction of dams must also be included. The following

discussion will not attempt to separate channel erosion caused by chan-

nelization or dams. The effects of channelization were given previously.

150. Comparison of the thalwegs (Figures 80~82), channel widths
(Figures 80-82), and tailwater rating curves (Figures 83-853) at the time
of the dam construction and those several years later shows there has
been a general increase in channel depth and width on all three of the
streams. Cross sections of Little Tallahatchie, Yocona, and Yalobusha
Rivers near the mouths of the study streams or trunk stream of the study
streams also show increases in channel depth and width on all three of
the major stream (Figures 86~88). The tributaries react to the cnange
in jase level of the trunk streams, in this case by degrading.

151. Perry Creek flows into Batupan Bogue approximately 2 miles
downstream from the junction of Batupan Bogue and the Yalobusha River.
Longitudinal profiles and cross sections show the Yalobusha River has
degraded. Figure 88 shows the Yalobusha River degraded 5-6 ft from
1951-53. Batupan Bogue has attempted to degrade in response to the
lowering of its base level, which is the Yalobusha River. The 1954 and
1977 longitudinal profiles of Batupan Bogue show a knickpoint at the
mouth (see Figure ¢3). The knickpoint is evidently hung up on a hard
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Figure 84. Tailwater rating curve for the Yocona River, approximately
2 miles downstream from the mouth of Peters Creek (U. S. Army Corps of
Engineers 1966a)
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downstream from the mouth of Batupan Bogue (U. S. Army Corps
of Engineers 1966c¢)
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Figure 87. Cross sections of Yocona River directly
downstream from the mouth of Peters Creek (U. S.
Army Corps of Engineers 1966a)
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from the mouth of Batupan Bogue (U. S. Army Corps of Engineers
1966¢)
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point, probably Tallahatta shale (Figure 89). A chronological sequence
of aerial photographs shows the channel erosion, especially bank ero-
sion, that has occurred at the mouth of Batupan Bogue since 1937 (Fig-
ure 90). The tributaries of Batupan Bogue, such as Perry Creek, are
responding to the degradation of Batupan Bogue by also degrading
(Figure 91).

152. The irregularity of the 1954 longitudinal profile of the
Goodwin Creek-Long Creek-Peters Creek-Yocona River system indicates the
channels may have been degrading (Figure 92). Figure 81 shows the
Yocona River has been degrading in some sections while aggrading in
other sections from 1949-61. Cross sections of the Yocona River
directly below the mouth of Peters Creek show that this section of the
Yocona River aggraded from 1949-53 and degraded from 1953-61 (Figure 87).
A chronological sequence of aerial photographs at the mouth of Peters
Creek shows the channel changes in Peters Creek and Yocona River since
1937 at this site (Figure 93). Both streams were channelized prior to
1937. The narrower, meandering prechannelization channel of Peters
Creek and the Yocona River can be seen on the photographs. The most
noticeable channel changes are the gradual increase in channel width
and sinuosity. The thalweg is meandering in the wide sediment-filled
channel. Increased bank erosion at the points where the thalweg is
deflected against a bank is widening the channel and simultaneously
increasing channel sinuosity.

153. Peters Creek is formed by the junction of Long and Johnson
Creeks., Peters Creek and the lower reaches of Long and Johnson Creeks
were channelized prior to 1935. A chronological sequence of aerial
photographs at the head of Peters Creek shows no major observable chan-
nel erosion until 1963 (Figure 94). Note the narrow, meandering pre-
channelization channels in Figure 94. Channel erosion had doubled the
channel width by 1979 and increased the channel depth.

154. The Yocona River degraded approximately 5 ft at the mouth of
Peters Creek from 1953-61, and the first observable significant channel
erosion at the head of Peters Creek occurred between 1957 and 1963.

Since the base level of a tributary is controlled by its trunk stream,

157

M . SOT b g <t s




e e <]

a. View of weathered Tallahatta shale in a
road cut

b. Right bank of Batupan Bogue upstream from the bridge
! in Figure 90, sheets 3 and 4

Figure 89. Tallahatta shale in bank of Batupan Bogue near
its mouth




Figure 90. Mouth of Batupan Bogue (Symbol "a" designates Yalobusha
River, "b" is Batupan Bogue.) (Sheet 1 of 4)




! Figure 90. (Sheet 2 of 4)




Figure 90. (Sheet 3 of 4)




Figure 90. (Sheet &4 of 4)




b. Mouse Creek directly dowstream of "a"

Figure 91. Channel erosion on Batupan Bogue
tributaries in 1977 (Continued)
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c. Worsham Creek

Figure 91. (Concluded)
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Figure 93. Mouth of Peters Creek (Symbol "a'" designates Peters Creek,
and "b" is the Yocona River.) (Sheet 1 of 3)




. (Sheet 2 of 3)

Figure 93
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Figure 93. (Sheet 3 of 3)
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Figure 94. Junction of Long and Johnson Creeks to form
Peters Creek (Symbol "a" designates Johnson Creek, "b"
is Long Creek, and "c¢" is Peters Creek.) (Continued)
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it seems logical to assume the degradation at the head of Peters Creek

was caused by degradation of the Yocona River and that the degradation

; has advanced up Long Creek to Goodwin Creek.
! 155. Schumm (1971) described the reaction a tributary has to the

lowering of its base level:

The average water surface elevation in the main chan-
nel acts as the base level for the tributary. It is ) 1
assumed here that the base level in the main channel .
has been lowered by a natural change in the river ‘
environment or by man-induced change. . . . Applying

Eq (5-60), QS - QgDgp, to the tributary stream, it

can be seen that the increase in the slope S+ must

be balanced by an increase in sediment transport Q+ .

Thus, under the new imposed condition, the local s

S gradient of the tributary stream is significantly

] : increased. This increased energy gradient induces

‘ headcutting and causes a significant increase in

water velocities in the tributary stream. This

results in bank instability, possible major changes

in the geomorphic characteristics of the tributary

stream, and increased local scour.
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PART V: CONCLUSIONS AND RECOMMENDATIONS

156. Channel erosion is the fluvial reaction to change in the
hydraulic and geomorphic conditions that control the fluvial processes.

These conditions are, to a great extent, interdependent and are adjusted

so that near-equilibrium conditions prevail in most natural stream sys-
tems. Any significant change in any one or more of the various condi-

tions and variables will produce changes in the other variables and

channel erosion may result.

Conclusions

157. Historical comparative analysis was used to identify signifi-
cant changes in four selected study areas--Perry, Tillatoba, Goodwin,

and Hotopha Creeks--and to detect the mechanisms that produce or could

produce these changes. The primary cause of streambank erosion in the
study area was human activities (land use, channelization, and dams).
Climate is considered a contributory cause only in the sense that it is
the major force behind all hydrologic phenomena.

158. Human activities affecting the hydraulic and geomorphic

conditions in the study areas can be broken down into six general
periods as follows:

a. The 1800's to the present. Much of the Delta area has
been cleared and the drainage systems improved so the
land can be used for agricultural purposes. Water and
sediment discharge have been increased; however, the
increase in water discharge has been much greater than
the increase in sediment discharge.

b. The 1800's and early 1900's. Logging and land clearing
for agricultural purposes removed much of the natural
vegetative cover in the uplands, thereby increasing run-
off and sheet and gully erosion. Stream flow and sedi-
ment discharge were increased.

c. The 1900's to 1940. Many streams were channelized to
increase the flow and sediment discharge, thereby re-
ducing flooding conditions and increasing arable land.
Channel slopes were increased.

d. From 1921 to 1953. Man-made cutoffs on the major trumk
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streams shortened the channels, thereby increasing
channel slopes.

e. The late 1930's to the present. Conservation practices
decreased runoff and soil erosion. Flow rate and sedi-
ment discharge were reduced.

f. The 1940's and 50's. Dams were constructed on the major
streams draining the uplands and the channels below the
dams were straightened to some extent. Channel slopes
below the dams were increased and sediment-free water
was released below the dam.

g+ Post-1940. Channelization has increased the gradient
of some streams such as Middle Fork, Tillatoba and
Hotopha Creeks.

159. Channelization since 1939 has caused the most drastic change
in the hydraulic and geomorphic conditions. All of the streams and
rivers associated with the Yazoo River Basin have been channelized to
some extent. Degradation resulting from the increased channel slopes
has and is advancing up each of the channels and their successive
tributaries. Headcutting in the Yazoo River Basin streams can usually
be associated with degradation on the channel systems connecting them
with zero-base level or sea level. The degradation of some of the chan-
nels, such as the upper reach of Middle Fork, is associated with altera-
tions or channelization of that particular channel.

160. Water discharge in the Delta streams has been significantly
changed by two factors: (a) The water discharge from the Delta area has
been significantly increased by agricultural and associated practices
while the sediment discharge has only been slightly increased; and
(b) the four streams draining approximately 70 percent of the uplands
have been dammed, thereby cutting off the sediment discharge (bed load)
but continuing the water discharge. The increase in water discharge
with a decrease in sediment discharge, combined with the increased
gradients resulting from channelization, increases channel degradation.

161. The degradation of the large channels may be only a few feet
and not particularly significant or noticeable on that channel. How-
ever, this few feet of degradation on the large channels becomes very
significant and noticeable when it advances up successively smaller

tributaries.
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162. Upland erosion, usually resulting from farming activities,
was evident to some extent in all four study areas. The increased sedi-
ment load introduced into the streams by gullying and sheet erosion did
not appear to significantly affect any of the four study areas. The
only noticeable bank erosion attributed to the increased sediment load
was in the first-, second-, and third-order streams and was more prev-
alent in headward reaches of the basins. Bank erosion resulting from
increased sediment loads was very extensive on some similarly sized
streams elsewhere in the Yazoo River Basin. Evidently, the capacity of
the major channels in the four study areas to transport the increased

diment loads without noticeable erosion of the banks was not exceeded.

Recommendations

163. Efforts to control streambank erosion should be directed
toward the control of channel degradation, since present-day bank ero-
sion is usually caused by channel degradation. If the upstream movement
of the knickpoints can be arrested or retarded, bank erosion can be more
easily controlled or reduced. Present data indicates that all of the
major Delta and upland channels downstream from the flood control dams
are being degraded to some extent. A more comprehensive collection of
historical and modern data could identify the critical areas of channel
degradation and the trend of the channel erosion. Grade-control struc-
tures could be more effectively located and designed by the combined
use of historical and modern data.

164. Farming activities in the uplands have increased in the past
few years. Pastureland on the steeper slopes has been converted to
cropland, and there has been some land clearing on the steeper slopes
for agricultural use. Numerous gullies can be seen on the steeper
slopes and in the gentler slopes where the water flow has been concen-
trated. The increasing sediment and water discharge into the streams
will change the hydraulic and geomorphic conditions, which could pos-
sibly cause an increase in channel erosion. The effects of the possible

increasing water and sediment discharges should be considered and
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verified in planning channel erosion measures. Conservation laws or
practices to control the upland erosion would be preferable.

165. Past and present agricultural practices in Delta have
changed the hydraulic and geomorphic conditions of Delta streams. Con-
tinued land clearing and drainage system improvements have increased the
water discharge into channels whose gradients have been increased by
channelization. Flood control dams have already removed the bed load
from the streams draining approximately 70 percent of the uplands,
thereby releasing sediment-free water into the channels just before
they enter the Delta. The effects of these changes in water and sedi-
ment discharge have to be quantified before excessive channel ero.:ion
can be effectively controlled.

166. A study of the streams upstream of the flood control dams
would help verify whether the excessive channel erosion downstream from
the dams was indeed caused by factors downstream of the dams or by some
regional factor such as tectonic forces.

167. There appears to be a need for a comprehensive basin study
and master plan in order to effectively stop or control excessive chan-
nel erosion both locally and basin-wide.

168. Several different agencies and branches within these agen-
cies are presently involved with the control or prevention of channel
erosion. The overall effectiveness and success of the streambank ero-
sion project could be enhanced if a more unified or combined approach

were used.
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Table 10

Man-Made Cutoffs on the Yazoo,

Tallahatchie, and Coldwater Rivers

Year Shortening
River Name of Cutoff Opened in Miles
Yazoo Jonestown 1953 2.1
Yazoo City 19ko 1.7
Belle Raire 1940 3.0
Hard Cash 1941 3.0
Famolsa 1941 1.9
Silent Shade 1941 1.4
Marksville B 1941 0.9
Sidon 1943 3.7
Subtotal - 17.7
Tallahatchie Pecan Point 1943 3.5
Lower Glendora 1942 1.5
Upper Glendora 19h2 2.2
Grassy Lake 19%0 0.8
Opossum Bayou 1940 0.9
Locopolis 1940 1.1
Tillatoba 1940 1.1
Oakland Lake 1941 0.k
Yonkapih 1941 1.%
Twin Lakes 1941 0.6
Oxbow 1941 1.8
White Lake 1941 0.7
Horseshoe Lake 1941 0.9
Blue Lake 1941 0.8
Willow Lake 1941 1.6
Island Lake 19k 0.8
Agar Lake 1941 0.8
Subtotal - 20.9
Coldwater Campbell White 1941 1.5
Morning Star 1941 1.9
Wright School 1941 1.8
Marks 19k1 0.5
Pompey Ditch 1921 2h.9
Coon Bayou and other cutoffs 1941-42 19.0
above Pompey Ditch to
Arkabutla Dam

Subtotal - 49.6
Total Shortening - 88.2
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In accordance with letter from DAEN-RDC, DAEN-ASI dated
22 July 1977, Subject: Facsimile Catalog Cards for
Laboratory Technical Publications, a facsimile catalog
card in Library of Congress MARC format is reproduced
below.

Whitten, Charlie B.

Engineering geology and geomorphology of streambank
erosion : Report 2 : Yazoo River Basin Uplands,
Mississippi / by Charlie B. Whitten, David M. Patrick
(Geotechnical Laboratory, U.S. Army Engineer Waterways
Experiment Station). -- Vicksburg, Miss. : The Station ;
Springfield, Va. : available from NTIS, 1981.

178, [19] p. : ill. ; 27 cm. -- (Technical report / U.S.
Army Engineer Waterways Experiment Station ; GL-79-7,
Report 2)

Cover title.

""October 1981."

“"prepared for Office, Chief of Engineers, U.S. Army
under Section 32 Program, Task II, Work Unit 4."

Bibliography: p. 176-178.

1. Engineering geology. 2. Erosion. 3, Geomorphology.
4. Yazoo River (Miss.) I. Patrick, David M.

Whitten, Charlie B.
Engineering geology and geomorphology of streambank : ... 1981.
(Card 2)

II. United States. Army. Corps of Engineers. Office of the
Chief of Engineers. III. U.S. Army Engineer Waterways
Experiment Station. Geotechnical Laboratory. IV. Title
V. Series: Technical report (U.S. Army Engineer Waterways
Experiment Station) ; GL-79-7; Report 2.

TA7.W34 1no.GL-79-7 Report 2







